Token Classification
Transformers
Safetensors
French
roberta
Inference Endpoints
bourdoiscatie commited on
Commit
9842478
·
verified ·
1 Parent(s): be9910e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1158 -64
README.md CHANGED
@@ -1,93 +1,1187 @@
1
  ---
2
- library_name: transformers
3
  license: mit
4
  base_model: almanach/camembertv2-base
5
- tags:
6
- - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
12
  model-index:
13
- - name: camembertv2-base-frenchNER_3entities
14
  results: []
 
 
 
 
 
 
 
 
 
15
  ---
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ```
18
- {'LOC': {'precision': 0.9510338498083464,
19
- 'recall': 0.9654366094263792,
20
- 'f1': 0.9581811094289677,
21
- 'number': 54740},
22
- 'MISC': {'precision': 0.8600569108290437,
23
- 'recall': 0.7587510224804671,
24
- 'f1': 0.806234077626255,
25
- 'number': 35453},
26
- 'O': {'precision': 0.9909218534126304,
27
- 'recall': 0.9936490359966582,
28
- 'f1': 0.9922835708676133,
29
- 'number': 805547},
30
- 'ORG': {'precision': 0.8822008564272441,
31
- 'recall': 0.921045972163644,
32
- 'f1': 0.901205018157808,
33
- 'number': 11855},
34
- 'PER': {'precision': 0.973038794785731,
35
- 'recall': 0.9823632323041278,
36
- 'f1': 0.9776787815093096,
37
- 'number': 63447},
38
- 'overall_precision': 0.9818586631680195,
39
- 'overall_recall': 0.9818586631680195,
40
- 'overall_f1': 0.9818586631680195,
41
- 'overall_accuracy': 0.9818586631680195}
42
- ```
43
 
44
- # camembertv2-base-frenchNER_3entities
45
 
46
- This model is a fine-tuned version of [almanach/camembertv2-base](https://huggingface.co/almanach/camembertv2-base) on an unknown dataset.
47
- It achieves the following results on the evaluation set:
48
- - Loss: 0.0621
49
- - Precision: 0.9822
50
- - Recall: 0.9822
51
- - F1: 0.9822
52
- - Accuracy: 0.9822
53
 
54
- ## Model description
55
 
56
- More information needed
57
 
58
- ## Intended uses & limitations
 
 
 
 
59
 
60
- More information needed
61
 
62
- ## Training and evaluation data
63
 
64
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
67
 
68
- ### Training hyperparameters
 
 
 
 
 
 
 
69
 
70
- The following hyperparameters were used during training:
71
- - learning_rate: 2e-05
72
- - train_batch_size: 8
73
- - eval_batch_size: 8
74
- - seed: 42
75
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
- - lr_scheduler_type: linear
77
- - num_epochs: 3
78
 
79
- ### Training results
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
- |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.0438 | 1.0 | 41095 | 0.0620 | 0.9801 | 0.9801 | 0.9801 | 0.9801 |
84
- | 0.0331 | 2.0 | 82190 | 0.0581 | 0.9816 | 0.9816 | 0.9816 | 0.9816 |
85
- | 0.0176 | 3.0 | 123285 | 0.0621 | 0.9822 | 0.9822 | 0.9822 | 0.9822 |
 
 
 
 
 
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
- ### Framework versions
 
 
 
 
 
 
 
 
 
 
 
89
 
90
- - Transformers 4.46.1
91
- - Pytorch 2.4.0+cu121
92
- - Datasets 2.21.0
93
- - Tokenizers 0.20.1
 
1
  ---
 
2
  license: mit
3
  base_model: almanach/camembertv2-base
 
 
4
  metrics:
5
  - precision
6
  - recall
7
  - f1
8
  - accuracy
9
  model-index:
10
+ - name: NERmembert2-4entities
11
  results: []
12
+ datasets:
13
+ - CATIE-AQ/frenchNER_4entities
14
+ language:
15
+ - fr
16
+ widget:
17
+ - text: "Le dévoilement du logo officiel des JO s'est déroulé le 21 octobre 2019 au Grand Rex. Ce nouvel emblème et cette nouvelle typographie ont été conçus par le designer Sylvain Boyer avec les agences Royalties & Ecobranding. Rond, il rassemble trois symboles : une médaille d'or, la flamme olympique et Marianne, symbolisée par un visage de femme mais privée de son bonnet phrygien caractéristique. La typographie dessinée fait référence à l'Art déco, mouvement artistique des années 1920, décennie pendant laquelle ont eu lieu pour la dernière fois les Jeux olympiques à Paris en 1924. Pour la première fois, ce logo sera unique pour les Jeux olympiques et les Jeux paralympiques."
18
+ library_name: transformers
19
+ pipeline_tag: token-classification
20
+ co2_eq_emissions: 25.5
21
  ---
22
 
23
+
24
+ # NERmembert-large-4entities
25
+
26
+ ## Model Description
27
+
28
+ We present **NERmembert2-4entities**, which is a [CamemBERT v2 base](https://huggingface.co/almanach/camembertv2-base) fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
29
+ All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities).
30
+ There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing.
31
+ Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
32
+
33
+
34
+ ## Evaluation results
35
+
36
+ The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package.
37
+
38
+ ### frenchNER_4entities
39
+
40
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
41
+
42
+ <table>
43
+ <thead>
44
+ <tr>
45
+ <th><br>Model</th>
46
+ <th><br>PER</th>
47
+ <th><br>LOC</th>
48
+ <th><br>ORG</th>
49
+ <th><br>MISC</th>
50
+ </tr>
51
+ </thead>
52
+ <tbody>
53
+ <tr>
54
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
55
+ <td><br>0.971</td>
56
+ <td><br>0.947</td>
57
+ <td><br>0.902</td>
58
+ <td><br>0.663</td>
59
+ </tr>
60
+ <tr>
61
+ <td rowspan="1"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
62
+ <td><br>0.974</td>
63
+ <td><br>0.948</td>
64
+ <td><br>0.892</td>
65
+ <td><br>0.658</td>
66
+ </tr>
67
+ <tr>
68
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
69
+ <td><br>0.978</td>
70
+ <td><br>0.958</td>
71
+ <td><br>0.903</td>
72
+ <td><br>0.814</td>
73
+ </tr>
74
+ <tr>
75
+ <td rowspan="1"><br>NERmembert2-4entities (this model) (111M)</td>
76
+ <td><br>0.978</td>
77
+ <td><br>0.958</td>
78
+ <td><br>0.901</td>
79
+ <td><br>0.806</td>
80
+ </tr>
81
+ <tr>
82
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
83
+ <td><br>0.979</td>
84
+ <td><br>0.961</td>
85
+ <td><br>0.915</td>
86
+ <td><br>0.812</td>
87
+ </tr>
88
+ <tr>
89
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
90
+ <td><br><b>0.982</b></td>
91
+ <td><br><b>0.964</b></td>
92
+ <td><br><b>0.919</b></td>
93
+ <td><br><b>0.834</b></td>
94
+ </tr>
95
+ </tbody>
96
+ </table>
97
+
98
+
99
+ <details>
100
+ <summary>Full results</summary>
101
+ <table>
102
+ <thead>
103
+ <tr>
104
+ <th><br>Model</th>
105
+ <th><br>Metrics</th>
106
+ <th><br>PER</th>
107
+ <th><br>LOC</th>
108
+ <th><br>ORG</th>
109
+ <th><br>MISC</th>
110
+ <th><br>O</th>
111
+ <th><br>Overall</th>
112
+ </tr>
113
+ </thead>
114
+ <tbody>
115
+ <tr>
116
+ <td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
117
+ <td><br>Precision</td>
118
+ <td><br>0.952</td>
119
+ <td><br>0.924</td>
120
+ <td><br>0.870</td>
121
+ <td><br>0.845</td>
122
+ <td><br>0.986</td>
123
+ <td><br>0.976</td>
124
+ </tr>
125
+ <tr>
126
+ <td><br>Recall</td>
127
+ <td><br>0.990</td>
128
+ <td><br>0.972</td>
129
+ <td><br>0.938</td>
130
+ <td><br>0.546</td>
131
+ <td><br>0.992</td>
132
+ <td><br>0.976</td>
133
+ </tr>
134
+ <tr>
135
+ <td>F1</td>
136
+ <td><br>0.971</td>
137
+ <td><br>0.947</td>
138
+ <td><br>0.902</td>
139
+ <td><br>0.663</td>
140
+ <td><br>0.989</td>
141
+ <td><br>0.976</td>
142
+ </tr>
143
+ <tr>
144
+ <td rowspan="3"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
145
+ <td><br>Precision</td>
146
+ <td><br>0.962</td>
147
+ <td><br>0.933</td>
148
+ <td><br>0.857</td>
149
+ <td><br>0.830</td>
150
+ <td><br>0.985</td>
151
+ <td><br>0.976</td>
152
+ </tr>
153
+ <tr>
154
+ <td><br>Recall</td>
155
+ <td><br>0.987</td>
156
+ <td><br>0.963</td>
157
+ <td><br>0.930</td>
158
+ <td><br>0.545</td>
159
+ <td><br>0.993</td>
160
+ <td><br>0.976</td>
161
+ </tr>
162
+ <tr>
163
+ <td>F1</td>
164
+ <td><br>0.974</td>
165
+ <td><br>0.948</td>
166
+ <td><br>0.892</td>
167
+ <td><br>0.658</td>
168
+ <td><br>0.989</td>
169
+ <td><br>0.976</td>
170
+ </tr>
171
+ <tr>
172
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
173
+ <td><br>Precision</td>
174
+ <td><br>0.973</td>
175
+ <td><br>0.951</td>
176
+ <td><br>0.888</td>
177
+ <td><br>0.850</td>
178
+ <td><br>0.993</td>
179
+ <td><br>0.984</td>
180
+ </tr>
181
+ <tr>
182
+ <td><br>Recall</td>
183
+ <td><br>0.983</td>
184
+ <td><br>0.964</td>
185
+ <td><br>0.918</td>
186
+ <td><br>0.781</td>
187
+ <td><br>0.993</td>
188
+ <td><br>0.984</td>
189
+ </tr>
190
+ <tr>
191
+ <td>F1</td>
192
+ <td><br>0.978</td>
193
+ <td><br>0.958</td>
194
+ <td><br>0.903</td>
195
+ <td><br>0.814</td>
196
+ <td><br>0.993</td>
197
+ <td><br>0.984</td>
198
+ </tr>
199
+ <tr>
200
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert2-4entities">NERmembert2-4entities (this model) (111M)</a></td>
201
+ <td><br>Precision</td>
202
+ <td><br>TODO</td>
203
+ <td><br>TODO</td>
204
+ <td><br>TODO</td>
205
+ <td><br>TODO</td>
206
+ <td><br>TODO</td>
207
+ <td><br>TODO</td>
208
+ </tr>
209
+ <tr>
210
+ <td><br>Recall</td>
211
+ <td><br>TODO</td>
212
+ <td><br>TODO</td>
213
+ <td><br>TODO</td>
214
+ <td><br>TODO</td>
215
+ <td><br>TODO</td>
216
+ <td><br>TODO</td>
217
+ </tr>
218
+ <tr>
219
+ <td>F1</td>
220
+ <td><br>TODO</td>
221
+ <td><br>TODO</td>
222
+ <td><br>TODO</td>
223
+ <td><br>TODO</td>
224
+ <td><br>TODO</td>
225
+ <td><br>TODO</td>
226
+ </tr>
227
+ <tr>
228
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
229
+ <td><br>Precision</td>
230
+ <td><br>TODO</td>
231
+ <td><br>TODO</td>
232
+ <td><br>TODO</td>
233
+ <td><br>TODO</td>
234
+ <td><br>TODO</td>
235
+ <td><br>TODO</td>
236
+ </tr>
237
+ <tr>
238
+ <td><br>Recall</td>
239
+ <td><br>TODO</td>
240
+ <td><br>TODO</td>
241
+ <td><br>TODO</td>
242
+ <td><br>TODO</td>
243
+ <td><br>TODO</td>
244
+ <td><br>TODO</td>
245
+ </tr>
246
+ <tr>
247
+ <td>F1</td>
248
+ <td><br>TODO</td>
249
+ <td><br>TODO</td>
250
+ <td><br>TODO</td>
251
+ <td><br>TODO</td>
252
+ <td><br>TODO</td>
253
+ <td><br>TODO</td>
254
+ </tr>
255
+ <tr>
256
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
257
+ <td><br>Precision</td>
258
+ <td><br>0.977</td>
259
+ <td><br>0.961</td>
260
+ <td><br>0.896</td>
261
+ <td><br>0.872</td>
262
+ <td><br>0.993</td>
263
+ <td><br>0.986</td>
264
+ </tr>
265
+ <tr>
266
+ <td><br>Recall</td>
267
+ <td><br>0.987</td>
268
+ <td><br>0.966</td>
269
+ <td><br>0.943</td>
270
+ <td><br>0.798</td>
271
+ <td><br>0.995</td>
272
+ <td><br>0.986</td>
273
+ </tr>
274
+ <tr>
275
+ <td>F1</td>
276
+ <td><br><b>0.982</b></td>
277
+ <td><br><b>0.964</b></td>
278
+ <td><br><b>0.919</b></td>
279
+ <td><br><b>0.834</b></td>
280
+ <td><br><b>0.994</b></td>
281
+ <td><br><b>0.986</b></td>
282
+ </tr>
283
+ </tbody>
284
+ </table>
285
+ </details>
286
+
287
+ In detail:
288
+
289
+ ### multiconer
290
+
291
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
292
+
293
+ <table>
294
+ <thead>
295
+ <tr>
296
+ <th><br>Model</th>
297
+ <th><br>PER</th>
298
+ <th><br>LOC</th>
299
+ <th><br>ORG</th>
300
+ <th><br>MISC</th>
301
+ </tr>
302
+ </thead>
303
+ <tbody>
304
+ <tr>
305
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
306
+ <td><br>0.940</td>
307
+ <td><br>0.761</td>
308
+ <td><br>0.723</td>
309
+ <td><br>0.560</td>
310
+ </tr>
311
+ <tr>
312
+ <td rowspan="1"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
313
+ <td><br>0.921</td>
314
+ <td><br>0.748</td>
315
+ <td><br>0.694</td>
316
+ <td><br>0.530</td>
317
+ </tr>
318
+ <tr>
319
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
320
+ <td><br>0.960</td>
321
+ <td><br>0.890</td>
322
+ <td><br>0.867</td>
323
+ <td><br>0.852</td>
324
+ </tr>
325
+ <tr>
326
+ <td rowspan="1"><br>NERmembert2-4entities (this model) (111M)</td>
327
+ <td><br>TODO</td>
328
+ <td><br>TODO</td>
329
+ <td><br>TODO</td>
330
+ <td><br>TODO</td>
331
+ </tr>
332
+ <tr>
333
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
334
+ <td><br>TODO</td>
335
+ <td><br>TODO</td>
336
+ <td><br>TODO</td>
337
+ <td><br>TODO</td>
338
+ </tr>
339
+ <tr>
340
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
341
+ <td><br><b>0.969</b></td>
342
+ <td><br><b>0.919</b></td>
343
+ <td><br><b>0.904</b></td>
344
+ <td><br><b>0.864</b></td>
345
+ </tr>
346
+ </tbody>
347
+ </table>
348
+
349
+ <details>
350
+ <summary>Full results</summary>
351
+ <table>
352
+ <thead>
353
+ <tr>
354
+ <th><br>Model</th>
355
+ <th><br>Metrics</th>
356
+ <th><br>PER</th>
357
+ <th><br>LOC</th>
358
+ <th><br>ORG</th>
359
+ <th><br>MISC</th>
360
+ <th><br>O</th>
361
+ <th><br>Overall</th>
362
+ </tr>
363
+ </thead>
364
+ <tbody>
365
+ <tr>
366
+ <td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
367
+ <td><br>Precision</td>
368
+ <td><br>0.908</td>
369
+ <td><br>0.717</td>
370
+ <td><br>0.753</td>
371
+ <td><br>0.620</td>
372
+ <td><br>0.936</td>
373
+ <td><br>0.889</td>
374
+ </tr>
375
+ <tr>
376
+ <td><br>Recall</td>
377
+ <td><br>0.975</td>
378
+ <td><br>0.811</td>
379
+ <td><br>0.696</td>
380
+ <td><br>0.511</td>
381
+ <td><br>0.938</td>
382
+ <td><br>0.889</td>
383
+ </tr>
384
+ <tr>
385
+ <td>F1</td>
386
+ <td><br>0.940</td>
387
+ <td><br>0.761</td>
388
+ <td><br>0.723</td>
389
+ <td><br>0.560</td>
390
+ <td><br>0.937</td>
391
+ <td><br>0.889</td>
392
+ </tr>
393
+ <tr>
394
+ <td rowspan="3"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
395
+ <td><br>Precision</td>
396
+ <td><br>0.885</td>
397
+ <td><br>0.738</td>
398
+ <td><br>0.737</td>
399
+ <td><br>0.589</td>
400
+ <td><br>0.928</td>
401
+ <td><br>0.881</td>
402
+ </tr>
403
+ <tr>
404
+ <td><br>Recall</td>
405
+ <td><br>0.960</td>
406
+ <td><br>0.759</td>
407
+ <td><br>0.655</td>
408
+ <td><br>0.482</td>
409
+ <td><br>0.939</td>
410
+ <td><br>0.881</td>
411
+ </tr>
412
+ <tr>
413
+ <td>F1</td>
414
+ <td><br>0.921</td>
415
+ <td><br>0.748</td>
416
+ <td><br>0.694</td>
417
+ <td><br>0.530</td>
418
+ <td><br>0.934</td>
419
+ <td><br>0.881</td>
420
+ </tr>
421
+ <tr>
422
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
423
+ <td><br>Precision</td>
424
+ <td><br>0.954</td>
425
+ <td><br>0.893</td>
426
+ <td><br>0.851</td>
427
+ <td><br>0.849</td>
428
+ <td><br>0.979</td>
429
+ <td><br>0.954</td>
430
+ </tr>
431
+ <tr>
432
+ <td><br>Recall</td>
433
+ <td><br>0.967</td>
434
+ <td><br>0.887</td>
435
+ <td><br>0.883</td>
436
+ <td><br>0.855</td>
437
+ <td><br>0.974</td>
438
+ <td><br>0.954</td>
439
+ </tr>
440
+ <tr>
441
+ <td>F1</td>
442
+ <td><br>0.960</td>
443
+ <td><br>0.890</td>
444
+ <td><br>0.867</td>
445
+ <td><br>0.852</td>
446
+ <td><br>0.977</td>
447
+ <td><br>0.954</td>
448
+ </tr>
449
+ <tr>
450
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert2-4entities">NERmembert2-4entities (this model) (111M)</a></td>
451
+ <td><br>Precision</td>
452
+ <td><br>TODO</td>
453
+ <td><br>TODO</td>
454
+ <td><br>TODO</td>
455
+ <td><br>TODO</td>
456
+ <td><br>TODO</td>
457
+ <td><br>TODO</td>
458
+ </tr>
459
+ <tr>
460
+ <td><br>Recall</td>
461
+ <td><br>TODO</td>
462
+ <td><br>TODO</td>
463
+ <td><br>TODO</td>
464
+ <td><br>TODO</td>
465
+ <td><br>TODO</td>
466
+ <td><br>TODO</td>
467
+ </tr>
468
+ <tr>
469
+ <td>F1</td>
470
+ <td><br>TODO</td>
471
+ <td><br>TODO</td>
472
+ <td><br>TODO</td>
473
+ <td><br>TODO</td>
474
+ <td><br>TODO</td>
475
+ <td><br>TODO</td>
476
+ </tr>
477
+ <tr>
478
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
479
+ <td><br>Precision</td>
480
+ <td><br>TODO</td>
481
+ <td><br>TODO</td>
482
+ <td><br>TODO</td>
483
+ <td><br>TODO</td>
484
+ <td><br>TODO</td>
485
+ <td><br>TODO</td>
486
+ </tr>
487
+ <tr>
488
+ <td><br>Recall</td>
489
+ <td><br>TODO</td>
490
+ <td><br>TODO</td>
491
+ <td><br>TODO</td>
492
+ <td><br>TODO</td>
493
+ <td><br>TODO</td>
494
+ <td><br>TODO</td>
495
+ </tr>
496
+ <tr>
497
+ <td>F1</td>
498
+ <td><br>TODO</td>
499
+ <td><br>TODO</td>
500
+ <td><br>TODO</td>
501
+ <td><br>TODO</td>
502
+ <td><br>TODO</td>
503
+ <td><br>TODO</td>
504
+ </tr>
505
+ <tr>
506
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
507
+ <td><br>Precision</td>
508
+ <td><br>0.964</td>
509
+ <td><br>0.922</td>
510
+ <td><br>0.904</td>
511
+ <td><br>0.856</td>
512
+ <td><br>0.981</td>
513
+ <td><br>0.961</td>
514
+ </tr>
515
+ <tr>
516
+ <td><br>Recall</td>
517
+ <td><br>0.975</td>
518
+ <td><br>0.917</td>
519
+ <td><br>0.904</td>
520
+ <td><br>0.872</td>
521
+ <td><br>0.976</td>
522
+ <td><br>0.961</td>
523
+ </tr>
524
+ <tr>
525
+ <td>F1</td>
526
+ <td><br><b>0.969</b></td>
527
+ <td><br><b>0.919</b></td>
528
+ <td><br><b>0.904</b></td>
529
+ <td><br><b>0.864</b></td>
530
+ <td><br><b>0.978</b></td>
531
+ <td><br><b>0.961</b></td>
532
+ </tr>
533
+ </tbody>
534
+ </table>
535
+ </details>
536
+
537
+
538
+ ### multinerd
539
+
540
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
541
+
542
+ <table>
543
+ <thead>
544
+ <tr>
545
+ <th><br>Model</th>
546
+ <th><br>PER</th>
547
+ <th><br>LOC</th>
548
+ <th><br>ORG</th>
549
+ <th><br>MISC</th>
550
+ </tr>
551
+ </thead>
552
+ <tbody>
553
+ <tr>
554
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
555
+ <td><br>0.962</td>
556
+ <td><br>0.934</td>
557
+ <td><br>0.888</td>
558
+ <td><br>0.419</td>
559
+ </tr>
560
+ <tr>
561
+ <td rowspan="1"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
562
+ <td><br>0.972</td>
563
+ <td><br>0.938</td>
564
+ <td><br>0.884</td>
565
+ <td><br>0.430</td>
566
+ </tr>
567
+ <tr>
568
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
569
+ <td><br>0.985</td>
570
+ <td><br>0.973</td>
571
+ <td><br>0.938</td>
572
+ <td><br>0.770</td>
573
+ </tr>
574
+ <tr>
575
+ <td rowspan="1"><br>NERmembert2-4entities (this model) (111M)</td>
576
+ <td><br>TODO</td>
577
+ <td><br>TODO</td>
578
+ <td><br>TODO</td>
579
+ <td><br>TODO</td>
580
+ </tr>
581
+ <tr>
582
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
583
+ <td><br>TODO</td>
584
+ <td><br>TODO</td>
585
+ <td><br>TODO</td>
586
+ <td><br>TODO</td>
587
+ </tr>
588
+ <tr>
589
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
590
+ <td><br><b>0.987</b></td>
591
+ <td><br>0.976</td>
592
+ <td><br>0.948</td>
593
+ <td><br><b>0.790</b></td>
594
+ </tr>
595
+ </tbody>
596
+ </table>
597
+
598
+ <details>
599
+ <summary>Full results</summary>
600
+ <table>
601
+ <thead>
602
+ <tr>
603
+ <th><br>Model</th>
604
+ <th><br>Metrics</th>
605
+ <th><br>PER</th>
606
+ <th><br>LOC</th>
607
+ <th><br>ORG</th>
608
+ <th><br>MISC</th>
609
+ <th><br>O</th>
610
+ <th><br>Overall</th>
611
+ </tr>
612
+ </thead>
613
+ <tbody>
614
+ <tr>
615
+ <td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
616
+ <td><br>Precision</td>
617
+ <td><br>0.931</td>
618
+ <td><br>0.893</td>
619
+ <td><br>0.827</td>
620
+ <td><br>0.725</td>
621
+ <td><br>0.979</td>
622
+ <td><br>0.966</td>
623
+ </tr>
624
+ <tr>
625
+ <td><br>Recall</td>
626
+ <td><br>0.994</td>
627
+ <td><br>0.980</td>
628
+ <td><br>0.959</td>
629
+ <td><br>0.295</td>
630
+ <td><br>0.990</td>
631
+ <td><br>0.966</td>
632
+ </tr>
633
+ <tr>
634
+ <td>F1</td>
635
+ <td><br>0.962</td>
636
+ <td><br>0.934</td>
637
+ <td><br>0.888</td>
638
+ <td><br>0.419</td>
639
+ <td><br>0.984</td>
640
+ <td><br>0.966</td>
641
+ </tr>
642
+ <tr>
643
+ <td rowspan="3"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
644
+ <td><br>Precision</td>
645
+ <td><br>0.954</td>
646
+ <td><br>0.908</td>
647
+ <td><br>0.817</td>
648
+ <td><br>0.705</td>
649
+ <td><br>0.977</td>
650
+ <td><br>0.967</td>
651
+ </tr>
652
+ <tr>
653
+ <td><br>Recall</td>
654
+ <td><br>0.991</td>
655
+ <td><br>0.969</td>
656
+ <td><br>0.963</td>
657
+ <td><br>0.310</td>
658
+ <td><br>0.990</td>
659
+ <td><br>0.967</td>
660
+ </tr>
661
+ <tr>
662
+ <td>F1</td>
663
+ <td><br>0.972</td>
664
+ <td><br>0.938</td>
665
+ <td><br>0.884</td>
666
+ <td><br>0.430</td>
667
+ <td><br>0.984</td>
668
+ <td><br>0.967</td>
669
+ </tr>
670
+ <tr>
671
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
672
+ <td><br>Precision</td>
673
+ <td><br>0.976</td>
674
+ <td><br>0.961</td>
675
+ <td><br>0.911</td>
676
+ <td><br>0.829</td>
677
+ <td><br>0.991</td>
678
+ <td><br>0.983</td>
679
+ </tr>
680
+ <tr>
681
+ <td><br>Recall</td>
682
+ <td><br>0.994</td>
683
+ <td><br>0.985</td>
684
+ <td><br>0.967</td>
685
+ <td><br>0.719</td>
686
+ <td><br>0.993</td>
687
+ <td><br>0.983</td>
688
+ </tr>
689
+ <tr>
690
+ <td>F1</td>
691
+ <td><br>0.985</td>
692
+ <td><br>0.973</td>
693
+ <td><br>0.938</td>
694
+ <td><br>0.770</td>
695
+ <td><br>0.992</td>
696
+ <td><br>0.983</td>
697
+ </tr>
698
+ <tr>
699
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert2-4entities">NERmembert2-4entities (this model) (111M)</a></td>
700
+ <td><br>Precision</td>
701
+ <td><br>TODO</td>
702
+ <td><br>TODO</td>
703
+ <td><br>TODO</td>
704
+ <td><br>TODO</td>
705
+ <td><br>TODO</td>
706
+ <td><br>TODO</td>
707
+ </tr>
708
+ <tr>
709
+ <td><br>Recall</td>
710
+ <td><br>TODO</td>
711
+ <td><br>TODO</td>
712
+ <td><br>TODO</td>
713
+ <td><br>TODO</td>
714
+ <td><br>TODO</td>
715
+ <td><br>TODO</td>
716
+ </tr>
717
+ <tr>
718
+ <td>F1</td>
719
+ <td><br>TODO</td>
720
+ <td><br>TODO</td>
721
+ <td><br>TODO</td>
722
+ <td><br>TODO</td>
723
+ <td><br>TODO</td>
724
+ <td><br>TODO</td>
725
+ </tr>
726
+ <tr>
727
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
728
+ <td><br>Precision</td>
729
+ <td><br>TODO</td>
730
+ <td><br>TODO</td>
731
+ <td><br>TODO</td>
732
+ <td><br>TODO</td>
733
+ <td><br>TODO</td>
734
+ <td><br>TODO</td>
735
+ </tr>
736
+ <tr>
737
+ <td><br>Recall</td>
738
+ <td><br>TODO</td>
739
+ <td><br>TODO</td>
740
+ <td><br>TODO</td>
741
+ <td><br>TODO</td>
742
+ <td><br>TODO</td>
743
+ <td><br>TODO</td>
744
+ </tr>
745
+ <tr>
746
+ <td>F1</td>
747
+ <td><br>TODO</td>
748
+ <td><br>TODO</td>
749
+ <td><br>TODO</td>
750
+ <td><br>TODO</td>
751
+ <td><br>TODO</td>
752
+ <td><br>TODO</td>
753
+ </tr>
754
+ <tr>
755
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
756
+ <td><br>Precision</td>
757
+ <td><br>0.979</td>
758
+ <td><br>0.967</td>
759
+ <td><br>0.922</td>
760
+ <td><br>0.852</td>
761
+ <td><br>0.991</td>
762
+ <td><br>0.985</td>
763
+ </tr>
764
+ <tr>
765
+ <td><br>Recall</td>
766
+ <td><br>0.996</td>
767
+ <td><br>0.986</td>
768
+ <td><br>0.974</td>
769
+ <td><br>0.736</td>
770
+ <td><br>0.994</td>
771
+ <td><br>0.985</td>
772
+ </tr>
773
+ <tr>
774
+ <td>F1</td>
775
+ <td><br><b>0.987</b></td>
776
+ <td><br>0.976</td>
777
+ <td><br>0.948</td>
778
+ <td><br><b>0.790</b></td>
779
+ <td><br>0.993</td>
780
+ <td><br>0.985</td>
781
+ </tr>
782
+ </tbody>
783
+ </table>
784
+ </details>
785
+
786
+ ### wikiner
787
+
788
+ For space reasons, we show only the F1 of the different models. You can see the full results below the table.
789
+
790
+ <table>
791
+ <thead>
792
+ <tr>
793
+ <th><br>Model</th>
794
+ <th><br>PER</th>
795
+ <th><br>LOC</th>
796
+ <th><br>ORG</th>
797
+ <th><br>MISC</th>
798
+ </tr>
799
+ </thead>
800
+ <tbody>
801
+ <tr>
802
+ <td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
803
+ <td><br><b>0.986</b></td>
804
+ <td><br><b>0.966</b></td>
805
+ <td><br><b>0.938</b></td>
806
+ <td><br><b>0.938</b></td>
807
+ </tr>
808
+ <tr>
809
+ <td rowspan="1"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
810
+ <td><br>0.983</td>
811
+ <td><br>0.964</td>
812
+ <td><br>0.925</td>
813
+ <td><br>0.926</td>
814
+ </tr>
815
+ <tr>
816
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
817
+ <td><br>0.970</td>
818
+ <td><br>0.945</td>
819
+ <td><br>0.876</td>
820
+ <td><br>0.872</td>
821
+ </tr>
822
+ <tr>
823
+ <td rowspan="1"><br>NERmembert2-4entities (this model) (111M)</td>
824
+ <td><br>TODO</td>
825
+ <td><br>TODO</td>
826
+ <td><br>TODO</td>
827
+ <td><br>TODO</td>
828
+ </tr>
829
+ <tr>
830
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
831
+ <td><br>TODO</td>
832
+ <td><br>TODO</td>
833
+ <td><br>TODO</td>
834
+ <td><br>TODO</td>
835
+ </tr>
836
+ <tr>
837
+ <td rowspan="1"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
838
+ <td><br>0.975</td>
839
+ <td><br>0.953</td>
840
+ <td><br>0.896</td>
841
+ <td><br>0.893</td>
842
+ </tr>
843
+ </tbody>
844
+ </table>
845
+
846
+ <details>
847
+ <summary>Full results</summary>
848
+ <table>
849
+ <thead>
850
+ <tr>
851
+ <th><br>Model</th>
852
+ <th><br>Metrics</th>
853
+ <th><br>PER</th>
854
+ <th><br>LOC</th>
855
+ <th><br>ORG</th>
856
+ <th><br>MISC</th>
857
+ <th><br>O</th>
858
+ <th><br>Overall</th>
859
+ </tr>
860
+ </thead>
861
+ <tbody>
862
+ <tr>
863
+ <td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner (110M)</a></td>
864
+ <td><br>Precision</td>
865
+ <td><br>0.986</td>
866
+ <td><br>0.962</td>
867
+ <td><br>0.925</td>
868
+ <td><br>0.943</td>
869
+ <td><br>0.998</td>
870
+ <td><br>0.992</td>
871
+ </tr>
872
+ <tr>
873
+ <td><br>Recall</td>
874
+ <td><br>0.987</td>
875
+ <td><br>0.969</td>
876
+ <td><br>0.951</td>
877
+ <td><br>0.933</td>
878
+ <td><br>0.997</td>
879
+ <td><br>0.992</td>
880
+ </tr>
881
+ <tr>
882
+ <td>F1</td>
883
+ <td><br><b>0.986</b></td>
884
+ <td><br><b>0.966</b></td>
885
+ <td><br><b>0.938</b></td>
886
+ <td><br><b>0.938</b></td>
887
+ <td><br><b>0.998</b></td>
888
+ <td><br><b>0.992</b></td>
889
+ </tr>
890
+ <tr>
891
+ <td rowspan="3"><br><a href="https://hf.co/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner (67.5M)</a></td>
892
+ <td><br>Precision</td>
893
+ <td><br>0.982</td>
894
+ <td><br>0.964</td>
895
+ <td><br>0.910</td>
896
+ <td><br>0.942</td>
897
+ <td><br>0.997</td>
898
+ <td><br>0.991</td>
899
+ </tr>
900
+ <tr>
901
+ <td><br>Recall</td>
902
+ <td><br>0.985</td>
903
+ <td><br>0.963</td>
904
+ <td><br>0.940</td>
905
+ <td><br>0.910</td>
906
+ <td><br>0.998</td>
907
+ <td><br>0.991</td>
908
+ </tr>
909
+ <tr>
910
+ <td>F1</td>
911
+ <td><br>0.983</td>
912
+ <td><br>0.964</td>
913
+ <td><br>0.925</td>
914
+ <td><br>0.926</td>
915
+ <td><br>0.997</td>
916
+ <td><br>0.991</td>
917
+ </tr>
918
+ <tr>
919
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
920
+ <td><br>Precision</td>
921
+ <td><br>0.970</td>
922
+ <td><br>0.944</td>
923
+ <td><br>0.872</td>
924
+ <td><br>0.878</td>
925
+ <td><br>0.996</td>
926
+ <td><br>0.986</td>
927
+ </tr>
928
+ <tr>
929
+ <td><br>Recall</td>
930
+ <td><br>0.969</td>
931
+ <td><br>0.947</td>
932
+ <td><br>0.880</td>
933
+ <td><br>0.866</td>
934
+ <td><br>0.996</td>
935
+ <td><br>0.986</td>
936
+ </tr>
937
+ <tr>
938
+ <td>F1</td>
939
+ <td><br>0.970</td>
940
+ <td><br>0.945</td>
941
+ <td><br>0.876</td>
942
+ <td><br>0.872</td>
943
+ <td><br>0.996</td>
944
+ <td><br>0.986</td>
945
+ </tr>
946
+ <tr>
947
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert2-4entities">NERmembert2-4entities (this model) (111M)</a></td>
948
+ <td><br>Precision</td>
949
+ <td><br>TODO</td>
950
+ <td><br>TODO</td>
951
+ <td><br>TODO</td>
952
+ <td><br>TODO</td>
953
+ <td><br>TODO</td>
954
+ <td><br>TODO</td>
955
+ </tr>
956
+ <tr>
957
+ <td><br>Recall</td>
958
+ <td><br>TODO</td>
959
+ <td><br>TODO</td>
960
+ <td><br>TODO</td>
961
+ <td><br>TODO</td>
962
+ <td><br>TODO</td>
963
+ <td><br>TODO</td>
964
+ </tr>
965
+ <tr>
966
+ <td>F1</td>
967
+ <td><br>TODO</td>
968
+ <td><br>TODO</td>
969
+ <td><br>TODO</td>
970
+ <td><br>TODO</td>
971
+ <td><br>TODO</td>
972
+ <td><br>TODO</td>
973
+ </tr>
974
+ <tr>
975
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmemberta-4entities">NERmemberta-4entities (111M)</a></td>
976
+ <td><br>Precision</td>
977
+ <td><br>TODO</td>
978
+ <td><br>TODO</td>
979
+ <td><br>TODO</td>
980
+ <td><br>TODO</td>
981
+ <td><br>TODO</td>
982
+ <td><br>TODO</td>
983
+ </tr>
984
+ <tr>
985
+ <td><br>Recall</td>
986
+ <td><br>TODO</td>
987
+ <td><br>TODO</td>
988
+ <td><br>TODO</td>
989
+ <td><br>TODO</td>
990
+ <td><br>TODO</td>
991
+ <td><br>TODO</td>
992
+ </tr>
993
+ <tr>
994
+ <td>F1</td>
995
+ <td><br>TODO</td>
996
+ <td><br>TODO</td>
997
+ <td><br>TODO</td>
998
+ <td><br>TODO</td>
999
+ <td><br>TODO</td>
1000
+ <td><br>TODO</td>
1001
+ </tr>
1002
+ <tr>
1003
+ <td rowspan="3"><br><a href="https://hf.co/CATIE-AQ/NERmembert-large-4entities">NERmembert-large-4entities (336M)</a></td>
1004
+ <td><br>Precision</td>
1005
+ <td><br>0.975</td>
1006
+ <td><br>0.957</td>
1007
+ <td><br>0.872</td>
1008
+ <td><br>0.901</td>
1009
+ <td><br>0.997</td>
1010
+ <td><br>0.989</td>
1011
+ </tr>
1012
+ <tr>
1013
+ <td><br>Recall</td>
1014
+ <td><br>0.975</td>
1015
+ <td><br>0.949</td>
1016
+ <td><br>0.922</td>
1017
+ <td><br>0.884</td>
1018
+ <td><br>0.997</td>
1019
+ <td><br>0.989</td>
1020
+ </tr>
1021
+ <tr>
1022
+ <td>F1</td>
1023
+ <td><br>0.975</td>
1024
+ <td><br>0.953</td>
1025
+ <td><br>0.896</td>
1026
+ <td><br>0.893</td>
1027
+ <td><br>0.997</td>
1028
+ <td><br>0.989</td>
1029
+ </tr>
1030
+ </tbody>
1031
+ </table>
1032
+ </details>
1033
+
1034
+
1035
+ ## Usage
1036
+ ### Code
1037
+
1038
+ ```python
1039
+ from transformers import pipeline
1040
+
1041
+ ner = pipeline('token-classification', model='CATIE-AQ/NERmembert2-4entities', tokenizer='CATIE-AQ/NERmembert2-4entities', aggregation_strategy="simple")
1042
+
1043
+ result = ner(
1044
+ "Le dévoilement du logo officiel des JO s'est déroulé le 21 octobre 2019 au Grand Rex. Ce nouvel emblème et cette nouvelle typographie ont été conçus par le designer Sylvain Boyer avec les agences Royalties & Ecobranding. Rond, il rassemble trois symboles : une médaille d'or, la flamme olympique et Marianne, symbolisée par un visage de femme mais privée de son bonnet phrygien caractéristique. La typographie dessinée fait référence à l'Art déco, mouvement artistique des années 1920, décennie pendant laquelle ont eu lieu pour la dernière fois les Jeux olympiques à Paris en 1924. Pour la première fois, ce logo sera unique pour les Jeux olympiques et les Jeux paralympiques."
1045
+ )
1046
+
1047
+ print(result)
1048
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
 
 
1050
 
1051
+ ### Try it through Space
1052
+ A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/NERmembert).
1053
+
 
 
 
 
1054
 
1055
+ ## Environmental Impact
1056
 
1057
+ *Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.*
1058
 
1059
+ - **Hardware Type:** A100 PCIe 40/80GB
1060
+ - **Hours used:** 1h51min
1061
+ - **Cloud Provider:** Private Infrastructure
1062
+ - **Carbon Efficiency (kg/kWh):** 0.055 (estimated from [electricitymaps](https://app.electricitymaps.com/zone/FR) for the day of November 21, 2024.)
1063
+ - **Carbon Emitted** *(Power consumption x Time x Carbon produced based on location of power grid)*: 0.0255 kg eq. CO2
1064
 
 
1065
 
 
1066
 
1067
+ ## Citations
1068
+
1069
+ ### NERmemBERT2-4entities
1070
+ ```
1071
+ @misc {NERmemberta2024,
1072
+ author = { {BOURDOIS, Loïck} },
1073
+ organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
1074
+ title = { NERmemberta-base-3entities },
1075
+ year = 2024,
1076
+ url = { https://huggingface.co/CATIE-AQ/NERmemberta-base-3entities },
1077
+ doi = { 10.57967/hf/1752 },
1078
+ publisher = { Hugging Face }
1079
+ }
1080
+ ```
1081
+
1082
+ ### NERmemBERT
1083
+ ```
1084
+ @misc {NERmembert2024,
1085
+ author = { {BOURDOIS, Loïck} },
1086
+ organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
1087
+ title = { NERmembert-base-3entities },
1088
+ year = 2024,
1089
+ url = { https://huggingface.co/CATIE-AQ/NERmembert-base-4entities },
1090
+ doi = { 10.57967/hf/1752 },
1091
+ publisher = { Hugging Face }
1092
+ }
1093
+ ```
1094
+
1095
+ ### CamemBERT
1096
+ ```
1097
+ @inproceedings{martin2020camembert,
1098
+ title={CamemBERT: a Tasty French Language Model},
1099
+ author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
1100
+ booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
1101
+ year={2020}}
1102
+ ```
1103
 
1104
+ ### CamemBERT 2.0
1105
+ ```
1106
+ @misc{antoun2024camembert20smarterfrench,
1107
+ title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection},
1108
+ author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
1109
+ year={2024},
1110
+ eprint={2411.08868},
1111
+ archivePrefix={arXiv},
1112
+ primaryClass={cs.CL},
1113
+ url={https://arxiv.org/abs/2411.08868},
1114
+ }
1115
+ ```
1116
 
1117
+ ### multiconer
1118
+ ```
1119
+ @inproceedings{multiconer2-report,
1120
+ title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},
1121
+ author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},
1122
+ booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},
1123
+ year={2023},
1124
+ publisher={Association for Computational Linguistics}}
1125
 
1126
+ @article{multiconer2-data,
1127
+ title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},
1128
+ author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},
1129
+ year={2023}}
1130
+ ```
 
 
 
1131
 
1132
+ ### multinerd
1133
+ ```
1134
+ @inproceedings{tedeschi-navigli-2022-multinerd,
1135
+ title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
1136
+ author = "Tedeschi, Simone and Navigli, Roberto",
1137
+ booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
1138
+ month = jul,
1139
+ year = "2022",
1140
+ address = "Seattle, United States",
1141
+ publisher = "Association for Computational Linguistics",
1142
+ url = "https://aclanthology.org/2022.findings-naacl.60",
1143
+ doi = "10.18653/v1/2022.findings-naacl.60",
1144
+ pages = "801--812"}
1145
+ ```
1146
 
1147
+ ### pii-masking-200k
1148
+ ```
1149
+ @misc {ai4privacy_2023,
1150
+ author = { {ai4Privacy} },
1151
+ title = { pii-masking-200k (Revision 1d4c0a1) },
1152
+ year = 2023,
1153
+ url = { https://huggingface.co/datasets/ai4privacy/pii-masking-200k },
1154
+ doi = { 10.57967/hf/1532 },
1155
+ publisher = { Hugging Face }}
1156
+ ```
1157
 
1158
+ ### wikiner
1159
+ ```
1160
+ @article{NOTHMAN2013151,
1161
+ title = {Learning multilingual named entity recognition from Wikipedia},
1162
+ journal = {Artificial Intelligence},
1163
+ volume = {194},
1164
+ pages = {151-175},
1165
+ year = {2013},
1166
+ note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},
1167
+ issn = {0004-3702},
1168
+ doi = {https://doi.org/10.1016/j.artint.2012.03.006},
1169
+ url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},
1170
+ author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}
1171
+ ```
1172
 
1173
+ ### frenchNER_4entities
1174
+ ```
1175
+ @misc {frenchNER2024,
1176
+ author = { {BOURDOIS, Loïck} },
1177
+ organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
1178
+ title = { frenchNER_4entities },
1179
+ year = 2024,
1180
+ url = { https://huggingface.co/CATIE-AQ/frenchNER_4entities },
1181
+ doi = { 10.57967/hf/1751 },
1182
+ publisher = { Hugging Face }
1183
+ }
1184
+ ```
1185
 
1186
+ ## License
1187
+ MIT