--- library_name: transformers license: mit base_model: almanach/camembertv2-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembertv2-base-frenchNER_3entities results: [] --- ``` {'LOC': {'precision': 0.9510338498083464, 'recall': 0.9654366094263792, 'f1': 0.9581811094289677, 'number': 54740}, 'MISC': {'precision': 0.8600569108290437, 'recall': 0.7587510224804671, 'f1': 0.806234077626255, 'number': 35453}, 'O': {'precision': 0.9909218534126304, 'recall': 0.9936490359966582, 'f1': 0.9922835708676133, 'number': 805547}, 'ORG': {'precision': 0.8822008564272441, 'recall': 0.921045972163644, 'f1': 0.901205018157808, 'number': 11855}, 'PER': {'precision': 0.973038794785731, 'recall': 0.9823632323041278, 'f1': 0.9776787815093096, 'number': 63447}, 'overall_precision': 0.9818586631680195, 'overall_recall': 0.9818586631680195, 'overall_f1': 0.9818586631680195, 'overall_accuracy': 0.9818586631680195} ``` # camembertv2-base-frenchNER_3entities This model is a fine-tuned version of [almanach/camembertv2-base](https://huggingface.co/almanach/camembertv2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0621 - Precision: 0.9822 - Recall: 0.9822 - F1: 0.9822 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0438 | 1.0 | 41095 | 0.0620 | 0.9801 | 0.9801 | 0.9801 | 0.9801 | | 0.0331 | 2.0 | 82190 | 0.0581 | 0.9816 | 0.9816 | 0.9816 | 0.9816 | | 0.0176 | 3.0 | 123285 | 0.0621 | 0.9822 | 0.9822 | 0.9822 | 0.9822 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1