--- license: mit base_model: almanach/camembertv2-base metrics: - precision - recall - f1 - accuracy model-index: - name: NERmembert2-4entities results: [] datasets: - CATIE-AQ/frenchNER_4entities language: - fr widget: - text: "Le dévoilement du logo officiel des JO s'est déroulé le 21 octobre 2019 au Grand Rex. Ce nouvel emblème et cette nouvelle typographie ont été conçus par le designer Sylvain Boyer avec les agences Royalties & Ecobranding. Rond, il rassemble trois symboles : une médaille d'or, la flamme olympique et Marianne, symbolisée par un visage de femme mais privée de son bonnet phrygien caractéristique. La typographie dessinée fait référence à l'Art déco, mouvement artistique des années 1920, décennie pendant laquelle ont eu lieu pour la dernière fois les Jeux olympiques à Paris en 1924. Pour la première fois, ce logo sera unique pour les Jeux olympiques et les Jeux paralympiques." library_name: transformers pipeline_tag: token-classification co2_eq_emissions: 25.5 --- # NERmembert2-4entities ## Model Description We present **NERmembert2-4entities**, which is a [CamemBERT v2 base](https://huggingface.co/almanach/camembertv2-base) fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC). All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities). There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing. Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/). ## Evaluation results The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package. ### frenchNER_4entities For space reasons, we show only the F1 of the different models. You can see the full results below the table.
Model |
Parameters |
Context |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner |
110M |
512 tokens |
0.971 |
0.947 |
0.902 |
0.663 |
cmarkea/distilcamembert-base-ner |
67.5M |
512 tokens |
0.974 |
0.948 |
0.892 |
0.658 |
NERmembert-base-4entities |
110M |
512 tokens |
0.978 |
0.958 |
0.903 |
0.814 |
NERmembert2-4entities (this model) |
111M |
1024 tokens |
0.978 |
0.958 |
0.901 |
0.806 |
NERmemberta-4entities |
111M |
1024 tokens |
0.979 |
0.961 |
0.915 |
0.812 |
NERmembert-large-4entities |
336M |
512 tokens |
0.982 |
0.964 |
0.919 |
0.834 |
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner (110M) |
Precision |
0.952 |
0.924 |
0.870 |
0.845 |
0.986 |
0.976 |
Recall |
0.990 |
0.972 |
0.938 |
0.546 |
0.992 |
0.976 |
|
F1 | 0.971 |
0.947 |
0.902 |
0.663 |
0.989 |
0.976 |
|
cmarkea/distilcamembert-base-ner (67.5M) |
Precision |
0.962 |
0.933 |
0.857 |
0.830 |
0.985 |
0.976 |
Recall |
0.987 |
0.963 |
0.930 |
0.545 |
0.993 |
0.976 |
|
F1 | 0.974 |
0.948 |
0.892 |
0.658 |
0.989 |
0.976 |
|
NERmembert-base-4entities (110M) |
Precision |
0.973 |
0.951 |
0.888 |
0.850 |
0.993 |
0.984 |
Recall |
0.983 |
0.964 |
0.918 |
0.781 |
0.993 |
0.984 |
|
F1 | 0.978 |
0.958 |
0.903 |
0.814 |
0.993 |
0.984 |
|
NERmembert2-4entities (111M) (this model) |
Precision |
0.973 |
0.951 |
0.882 |
0.860 |
0.991 |
0.982 |
Recall |
0.982 |
0.965 |
0.921 |
0.759 |
0.994 |
0.982 |
|
F1 | 0.978 |
0.958 |
0.901 |
0.806 |
0.992 |
0.982 |
|
NERmemberta-4entities (111M) |
Precision |
0.976 |
0.955 |
0.894 |
0.856 |
0.991 |
0.983 |
Recall |
0.983 |
0.968 |
0.936 |
0.772 |
0.994 |
0.983 |
|
F1 | 0.979 |
0.961 |
0.915 |
0.812 |
0.992 |
0.983 |
|
NERmembert-large-4entities (336M) |
Precision |
0.977 |
0.961 |
0.896 |
0.872 |
0.993 |
0.986 |
Recall |
0.987 |
0.966 |
0.943 |
0.798 |
0.995 |
0.986 |
|
F1 | 0.982 |
0.964 |
0.919 |
0.834 |
0.994 |
0.986 |
Model |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|
Jean-Baptiste/camembert-ner (110M) |
0.940 |
0.761 |
0.723 |
0.560 |
cmarkea/distilcamembert-base-ner (67.5M) |
0.921 |
0.748 |
0.694 |
0.530 |
NERmembert-base-4entities (110M) |
0.960 |
0.890 |
0.867 |
0.852 |
NERmembert2-4entities (111M) (this model) |
0.964 |
0.888 |
0.864 |
0.850 |
NERmemberta-4entities (111M) |
0.966 |
0.891 |
0.867 |
0.862 |
NERmembert-large-4entities (336M) |
0.969 |
0.919 |
0.904 |
0.864 |
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner (110M) |
Precision |
0.908 |
0.717 |
0.753 |
0.620 |
0.936 |
0.889 |
Recall |
0.975 |
0.811 |
0.696 |
0.511 |
0.938 |
0.889 |
|
F1 | 0.940 |
0.761 |
0.723 |
0.560 |
0.937 |
0.889 |
|
cmarkea/distilcamembert-base-ner (67.5M) |
Precision |
0.885 |
0.738 |
0.737 |
0.589 |
0.928 |
0.881 |
Recall |
0.960 |
0.759 |
0.655 |
0.482 |
0.939 |
0.881 |
|
F1 | 0.921 |
0.748 |
0.694 |
0.530 |
0.934 |
0.881 |
|
NERmembert-base-4entities (110M) |
Precision |
0.954 |
0.893 |
0.851 |
0.849 |
0.979 |
0.954 |
Recall |
0.967 |
0.887 |
0.883 |
0.855 |
0.974 |
0.954 |
|
F1 | 0.960 |
0.890 |
0.867 |
0.852 |
0.977 |
0.954 |
|
NERmembert2-4entities (111M) (this model) |
Precision |
0.953 |
0.890 |
0.870 |
0.842 |
0.976 |
0.952 |
Recall |
0.975 |
0.887 |
0.857 |
0.858 |
0.970 |
0.952 |
|
F1 | 0.964 |
0.888 |
0.864 |
0.850 |
0.973 |
0.952 |
|
NERmemberta-4entities (111M) |
Precision |
0.961 |
0.895 |
0.859 |
0.845 |
0.978 |
0.953 |
Recall |
0.972 |
0.886 |
0.876 |
0.879 |
0.970 |
0.953 |
|
F1 | 0.966 |
0.891 |
0.867 |
0.862 |
0.974 |
0.953 |
|
NERmembert-large-4entities (336M) |
Precision |
0.964 |
0.922 |
0.904 |
0.856 |
0.981 |
0.961 |
Recall |
0.975 |
0.917 |
0.904 |
0.872 |
0.976 |
0.961 |
|
F1 | 0.969 |
0.919 |
0.904 |
0.864 |
0.978 |
0.961 |
Model |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|
Jean-Baptiste/camembert-ner (110M) |
0.962 |
0.934 |
0.888 |
0.419 |
cmarkea/distilcamembert-base-ner (67.5M) |
0.972 |
0.938 |
0.884 |
0.430 |
NERmembert-base-4entities (110M) |
0.985 |
0.973 |
0.938 |
0.770 |
NERmembert2-4entities (111M) (this model) |
0.986 |
0.974 |
0.937 |
0.761 |
NERmemberta-4entities (111M) |
0.987 |
0.976 |
0.942 |
0.770 |
NERmembert-large-4entities (336M) |
0.987 |
0.976 |
0.948 |
0.790 |
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner (110M) |
Precision |
0.931 |
0.893 |
0.827 |
0.725 |
0.979 |
0.966 |
Recall |
0.994 |
0.980 |
0.959 |
0.295 |
0.990 |
0.966 |
|
F1 | 0.962 |
0.934 |
0.888 |
0.419 |
0.984 |
0.966 |
|
cmarkea/distilcamembert-base-ner (67.5M) |
Precision |
0.954 |
0.908 |
0.817 |
0.705 |
0.977 |
0.967 |
Recall |
0.991 |
0.969 |
0.963 |
0.310 |
0.990 |
0.967 |
|
F1 | 0.972 |
0.938 |
0.884 |
0.430 |
0.984 |
0.967 |
|
NERmembert-base-4entities (110M) |
Precision |
0.976 |
0.961 |
0.911 |
0.829 |
0.991 |
0.983 |
Recall |
0.994 |
0.985 |
0.967 |
0.719 |
0.993 |
0.983 |
|
F1 | 0.985 |
0.973 |
0.938 |
0.770 |
0.992 |
0.983 |
|
NERmembert2-4entities (111M) (this model) |
Precision |
0.976 |
0.962 |
0.903 |
0.846 |
0.988 |
0.980 |
Recall |
0.995 |
0.986 |
0.974 |
0.692 |
0.992 |
0.980 |
|
F1 | 0.986 |
0.974 |
0.937 |
0.761 |
0.990 |
0.980 |
|
NERmemberta-4entities (111M) |
Precision |
0.979 |
0.963 |
0.912 |
0.848 |
0.988 |
0.981 |
Recall |
0.996 |
0.989 |
0.975 |
0.705 |
0.992 |
0.981 |
|
F1 | 0.987 |
0.976 |
0.942 |
0.770 |
0.990 |
0.981 |
|
NERmembert-large-4entities (336M) |
Precision |
0.979 |
0.967 |
0.922 |
0.852 |
0.991 |
0.985 |
Recall |
0.996 |
0.986 |
0.974 |
0.736 |
0.994 |
0.985 |
|
F1 | 0.987 |
0.976 |
0.948 |
0.790 |
0.993 |
0.985 |
Model |
PER |
LOC |
ORG |
MISC |
---|---|---|---|---|
Jean-Baptiste/camembert-ner (110M) |
0.986 |
0.966 |
0.938 |
0.938 |
cmarkea/distilcamembert-base-ner (67.5M) |
0.983 |
0.964 |
0.925 |
0.926 |
NERmembert-base-4entities (110M) |
0.970 |
0.945 |
0.876 |
0.872 |
NERmembert2-4entities (111M) (this model) |
0.968 |
0.945 |
0.874 |
0.871 |
NERmemberta-4entities (111M) |
0.969 |
0.950 |
0.897 |
0.871 |
NERmembert-large-4entities (336M) |
0.975 |
0.953 |
0.896 |
0.893 |
Model |
Metrics |
PER |
LOC |
ORG |
MISC |
O |
Overall |
---|---|---|---|---|---|---|---|
Jean-Baptiste/camembert-ner (110M) |
Precision |
0.986 |
0.962 |
0.925 |
0.943 |
0.998 |
0.992 |
Recall |
0.987 |
0.969 |
0.951 |
0.933 |
0.997 |
0.992 |
|
F1 | 0.986 |
0.966 |
0.938 |
0.938 |
0.998 |
0.992 |
|
cmarkea/distilcamembert-base-ner (67.5M) |
Precision |
0.982 |
0.964 |
0.910 |
0.942 |
0.997 |
0.991 |
Recall |
0.985 |
0.963 |
0.940 |
0.910 |
0.998 |
0.991 |
|
F1 | 0.983 |
0.964 |
0.925 |
0.926 |
0.997 |
0.991 |
|
NERmembert-base-4entities (110M) |
Precision |
0.970 |
0.944 |
0.872 |
0.878 |
0.996 |
0.986 |
Recall |
0.969 |
0.947 |
0.880 |
0.866 |
0.996 |
0.986 |
|
F1 | 0.970 |
0.945 |
0.876 |
0.872 |
0.996 |
0.986 |
|
NERmembert2-4entities (111M) (this model) |
Precision |
0.970 |
0.942 |
0.865 |
0.883 |
0.996 |
0.985 |
Recall |
0.966 |
0.948 |
0.883 |
0.859 |
0.996 |
0.985 |
|
F1 | 0.968 |
0.945 |
0.874 |
0.871 |
0.996 |
0.985 |
|
NERmemberta-4entities (111M) |
Precision |
0.974 |
0.949 |
0.883 |
0.869 |
0.996 |
0.986 |
Recall |
0.965 |
0.951 |
0.910 |
0.872 |
0.996 |
0.986 |
|
F1 | 0.969 |
0.950 |
0.897 |
0.871 |
0.996 |
0.986 |
|
NERmembert-large-4entities (336M) |
Precision |
0.975 |
0.957 |
0.872 |
0.901 |
0.997 |
0.989 |
Recall |
0.975 |
0.949 |
0.922 |
0.884 |
0.997 |
0.989 |
|
F1 | 0.975 |
0.953 |
0.896 |
0.893 |
0.997 |
0.989 |