End of training
Browse files- README.md +68 -0
- emissions.csv +2 -0
- metrics.json +9 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: roberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: cwe-parent-vulnerability-classification-roberta-base
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# cwe-parent-vulnerability-classification-roberta-base
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.6317
|
23 |
+
- Accuracy: 0.4111
|
24 |
+
- F1: 0.0069
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 3e-05
|
44 |
+
- train_batch_size: 40
|
45 |
+
- eval_batch_size: 40
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 5
|
50 |
+
- label_smoothing_factor: 0.1
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
56 |
+
| 4.5723 | 1.0 | 20 | 4.0892 | 0.2397 | 0.0022 |
|
57 |
+
| 4.0579 | 2.0 | 40 | 3.9983 | 0.2397 | 0.0022 |
|
58 |
+
| 3.9765 | 3.0 | 60 | 3.9314 | 0.2448 | 0.0025 |
|
59 |
+
| 3.9012 | 4.0 | 80 | 3.7501 | 0.3776 | 0.0064 |
|
60 |
+
| 3.7555 | 5.0 | 100 | 3.6317 | 0.4111 | 0.0069 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.55.0
|
66 |
+
- Pytorch 2.7.1+cu126
|
67 |
+
- Datasets 4.0.0
|
68 |
+
- Tokenizers 0.21.2
|
emissions.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2025-08-13T10:10:27,codecarbon,b5c70249-ce94-4ba6-87bc-ddbee31a9e67,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,72.31097214482725,0.0013173524712290327,1.821787803641455e-05,42.5,450.87281593019804,94.34468364715576,0.0008532083166213449,0.00976771086979511,0.0018939480625602314,0.012514867248976684,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
|
metrics.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_loss": 3.6316609382629395,
|
3 |
+
"eval_accuracy": 0.4110824742268041,
|
4 |
+
"eval_f1": 0.006900071113956835,
|
5 |
+
"eval_runtime": 3.6016,
|
6 |
+
"eval_samples_per_second": 215.462,
|
7 |
+
"eval_steps_per_second": 5.553,
|
8 |
+
"epoch": 5.0
|
9 |
+
}
|