File size: 1,876 Bytes
6f22104
 
 
 
 
 
 
 
 
 
 
48d7755
 
6f22104
 
 
 
 
 
 
48d7755
 
 
 
7e7203f
 
 
3f18f54
6f22104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e7203f
 
 
 
 
6f22104
 
 
 
 
 
 
48d7755
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
library_name: transformers
license: apache-2.0
base_model: hfl/chinese-macbert-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-chinese-macbert-base
  results: []
datasets:
- CIRCL/Vulnerability-CNVD
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vulnerability-severity-classification-chinese-macbert-base

This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD).

You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.

It achieves the following results on the evaluation set:
- Loss: 0.5994
- Accuracy: 0.7900

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.65          | 1.0   | 3388  | 0.5772          | 0.7561   |
| 0.582         | 2.0   | 6776  | 0.5656          | 0.7620   |
| 0.5284        | 3.0   | 10164 | 0.5274          | 0.7881   |
| 0.3406        | 4.0   | 13552 | 0.5555          | 0.7869   |
| 0.3224        | 5.0   | 16940 | 0.5994          | 0.7900   |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1