elselse commited on
Commit
6a38d24
·
verified ·
1 Parent(s): d3a312d

End of training

Browse files
Files changed (3) hide show
  1. README.md +22 -38
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,53 +1,37 @@
1
  ---
2
- base_model: hfl/chinese-macbert-base
3
- datasets:
4
- - CIRCL/Vulnerability-CNVD
5
  library_name: transformers
6
  license: apache-2.0
7
- metrics:
8
- - accuracy
9
  tags:
10
  - generated_from_trainer
11
- - text-classification
12
- - classification
13
- - nlp
14
- - chinese
15
- - vulnerability
16
- pipeline_tag: text-classification
17
- language: zh
18
  model-index:
19
  - name: vulnerability-severity-classification-chinese-macbert-base
20
  results: []
21
  ---
22
 
23
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Chinese Text)
 
24
 
25
- This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD).
26
-
27
- For more information, visit the [Vulnerability-Lookup project page](https://vulnerability.circl.lu) or the [ML-Gateway GitHub repository](https://github.com/vulnerability-lookup/ML-Gateway), which demonstrates its usage in a FastAPI server.
28
 
 
29
  It achieves the following results on the evaluation set:
30
- - Loss: 0.5994
31
- - Accuracy: 0.7900
 
 
32
 
33
- ## How to use
34
 
35
- You can use this model directly with the Hugging Face `transformers` library for text classification:
36
 
37
- ```python
38
- from transformers import pipeline
39
 
40
- classifier = pipeline(
41
- "text-classification",
42
- model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
43
- )
44
 
45
- # Example usage for a Chinese vulnerability description
46
- description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
47
- result_chinese = classifier(description_chinese)
48
- print(result_chinese)
49
- # Expected output example: [{'label': '高', 'score': 0.9802}]
50
- ```
51
 
52
  ## Training procedure
53
 
@@ -66,11 +50,11 @@ The following hyperparameters were used during training:
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
69
- | 0.65 | 1.0 | 3388 | 0.5772 | 0.7561 |
70
- | 0.582 | 2.0 | 6776 | 0.5656 | 0.7620 |
71
- | 0.5284 | 3.0 | 10164 | 0.5274 | 0.7881 |
72
- | 0.3406 | 4.0 | 13552 | 0.5555 | 0.7869 |
73
- | 0.3224 | 5.0 | 16940 | 0.5994 | 0.7900 |
74
 
75
 
76
  ### Framework versions
@@ -78,4 +62,4 @@ The following hyperparameters were used during training:
78
  - Transformers 4.51.3
79
  - Pytorch 2.7.1+cu126
80
  - Datasets 3.6.0
81
- - Tokenizers 0.21.1
 
1
  ---
 
 
 
2
  library_name: transformers
3
  license: apache-2.0
4
+ base_model: hfl/chinese-macbert-base
 
5
  tags:
6
  - generated_from_trainer
7
+ metrics:
8
+ - accuracy
 
 
 
 
 
9
  model-index:
10
  - name: vulnerability-severity-classification-chinese-macbert-base
11
  results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # vulnerability-severity-classification-chinese-macbert-base
 
 
18
 
19
+ This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.6172
22
+ - Accuracy: 0.7817
23
+
24
+ ## Model description
25
 
26
+ More information needed
27
 
28
+ ## Intended uses & limitations
29
 
30
+ More information needed
 
31
 
32
+ ## Training and evaluation data
 
 
 
33
 
34
+ More information needed
 
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
53
+ | 0.6329 | 1.0 | 3412 | 0.5832 | 0.7546 |
54
+ | 0.5215 | 2.0 | 6824 | 0.5531 | 0.7750 |
55
+ | 0.4827 | 3.0 | 10236 | 0.5521 | 0.7768 |
56
+ | 0.3448 | 4.0 | 13648 | 0.5822 | 0.7814 |
57
+ | 0.3865 | 5.0 | 17060 | 0.6172 | 0.7817 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.1+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-07-03T08:48:19,codecarbon,6b6ee9a5-bd5e-4b19-a09c-85d1371fcaf6,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,5843.158349264413,0.11051319342331094,1.8913263481422386e-05,42.5,416.29527770671575,94.34468364715576,0.06893670656428569,0.8279147587201692,0.15302544705236684,1.0498769123368223,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-07-16T08:11:24,codecarbon,fdc7d841-f907-4035-9903-95cdd678e97f,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,5853.097029601224,0.1108801330521463,1.894383990072016e-05,42.5,397.9241498104493,94.34468364715576,0.06905461438023941,0.8310216200945035,0.15328660956491294,1.0533628440396559,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b779c2fc8aef278cc2ab0653b0bf65359af6b388a9a62eca8706a16bc0d0cf6
3
  size 409103316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59714d02dcbe4adcb513d9ff60047c50056f899073586494b5c1f85cb8230a7c
3
  size 409103316