End of training
Browse files- README.md +22 -38
- emissions.csv +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,53 +1,37 @@
|
|
1 |
---
|
2 |
-
base_model: hfl/chinese-macbert-base
|
3 |
-
datasets:
|
4 |
-
- CIRCL/Vulnerability-CNVD
|
5 |
library_name: transformers
|
6 |
license: apache-2.0
|
7 |
-
|
8 |
-
- accuracy
|
9 |
tags:
|
10 |
- generated_from_trainer
|
11 |
-
|
12 |
-
-
|
13 |
-
- nlp
|
14 |
-
- chinese
|
15 |
-
- vulnerability
|
16 |
-
pipeline_tag: text-classification
|
17 |
-
language: zh
|
18 |
model-index:
|
19 |
- name: vulnerability-severity-classification-chinese-macbert-base
|
20 |
results: []
|
21 |
---
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
For more information, visit the [Vulnerability-Lookup project page](https://vulnerability.circl.lu) or the [ML-Gateway GitHub repository](https://github.com/vulnerability-lookup/ML-Gateway), which demonstrates its usage in a FastAPI server.
|
28 |
|
|
|
29 |
It achieves the following results on the evaluation set:
|
30 |
-
- Loss: 0.
|
31 |
-
- Accuracy: 0.
|
|
|
|
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
from transformers import pipeline
|
39 |
|
40 |
-
|
41 |
-
"text-classification",
|
42 |
-
model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
|
43 |
-
)
|
44 |
|
45 |
-
|
46 |
-
description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
|
47 |
-
result_chinese = classifier(description_chinese)
|
48 |
-
print(result_chinese)
|
49 |
-
# Expected output example: [{'label': '高', 'score': 0.9802}]
|
50 |
-
```
|
51 |
|
52 |
## Training procedure
|
53 |
|
@@ -66,11 +50,11 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
@@ -78,4 +62,4 @@ The following hyperparameters were used during training:
|
|
78 |
- Transformers 4.51.3
|
79 |
- Pytorch 2.7.1+cu126
|
80 |
- Datasets 3.6.0
|
81 |
-
- Tokenizers 0.21.1
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
+
base_model: hfl/chinese-macbert-base
|
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
|
|
|
|
|
|
|
|
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-chinese-macbert-base
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
+
# vulnerability-severity-classification-chinese-macbert-base
|
|
|
|
|
18 |
|
19 |
+
This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6172
|
22 |
+
- Accuracy: 0.7817
|
23 |
+
|
24 |
+
## Model description
|
25 |
|
26 |
+
More information needed
|
27 |
|
28 |
+
## Intended uses & limitations
|
29 |
|
30 |
+
More information needed
|
|
|
31 |
|
32 |
+
## Training and evaluation data
|
|
|
|
|
|
|
33 |
|
34 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Training procedure
|
37 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| 0.6329 | 1.0 | 3412 | 0.5832 | 0.7546 |
|
54 |
+
| 0.5215 | 2.0 | 6824 | 0.5531 | 0.7750 |
|
55 |
+
| 0.4827 | 3.0 | 10236 | 0.5521 | 0.7768 |
|
56 |
+
| 0.3448 | 4.0 | 13648 | 0.5822 | 0.7814 |
|
57 |
+
| 0.3865 | 5.0 | 17060 | 0.6172 | 0.7817 |
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
62 |
- Transformers 4.51.3
|
63 |
- Pytorch 2.7.1+cu126
|
64 |
- Datasets 3.6.0
|
65 |
+
- Tokenizers 0.21.1
|
emissions.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
-
2025-07-
|
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2025-07-16T08:11:24,codecarbon,fdc7d841-f907-4035-9903-95cdd678e97f,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,5853.097029601224,0.1108801330521463,1.894383990072016e-05,42.5,397.9241498104493,94.34468364715576,0.06905461438023941,0.8310216200945035,0.15328660956491294,1.0533628440396559,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 409103316
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59714d02dcbe4adcb513d9ff60047c50056f899073586494b5c1f85cb8230a7c
|
3 |
size 409103316
|