cedricbonhomme commited on
Commit
122bcbf
·
verified ·
1 Parent(s): 0f8886a

End of training

Browse files
Files changed (3) hide show
  1. README.md +15 -37
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,42 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
 
 
23
 
24
  ## Model description
25
 
26
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
27
-
28
-
29
- ## How to get started with the model
30
-
31
- ```python
32
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
33
- import torch
34
-
35
- labels = ["low", "medium", "high", "critical"]
36
-
37
- model_name = "CIRCL/vulnerability-scores"
38
- tokenizer = AutoTokenizer.from_pretrained(model_name)
39
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
40
- model.eval()
41
-
42
- test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
43
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
44
 
45
- # Run inference
46
- with torch.no_grad():
47
- outputs = model(**inputs)
48
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
49
 
 
50
 
51
- # Print results
52
- print("Predictions:", predictions)
53
- predicted_class = torch.argmax(predictions, dim=-1).item()
54
- print("Predicted severity:", labels[predicted_class])
55
- ```
56
 
 
57
 
58
  ## Training procedure
59
 
@@ -72,11 +50,11 @@ The following hyperparameters were used during training:
72
 
73
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
74
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
75
- | 0.6309 | 1.0 | 25825 | 0.6348 | 0.7432 |
76
- | 0.5293 | 2.0 | 51650 | 0.5614 | 0.7708 |
77
- | 0.5551 | 3.0 | 77475 | 0.5202 | 0.7954 |
78
- | 0.4509 | 4.0 | 103300 | 0.5038 | 0.8168 |
79
- | 0.2226 | 5.0 | 129125 | 0.5055 | 0.8279 |
80
 
81
 
82
  ### Framework versions
@@ -84,4 +62,4 @@ The following hyperparameters were used during training:
84
  - Transformers 4.49.0
85
  - Pytorch 2.6.0+cu124
86
  - Datasets 3.3.2
87
- - Tokenizers 0.21.0
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5199
22
+ - Accuracy: 0.8203
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
31
 
32
+ ## Training and evaluation data
 
 
 
 
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.789 | 1.0 | 26074 | 0.6449 | 0.7397 |
54
+ | 0.5376 | 2.0 | 52148 | 0.5900 | 0.7620 |
55
+ | 0.5195 | 3.0 | 78222 | 0.5626 | 0.7907 |
56
+ | 0.484 | 4.0 | 104296 | 0.5167 | 0.8107 |
57
+ | 0.3164 | 5.0 | 130370 | 0.5199 | 0.8203 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.49.0
63
  - Pytorch 2.6.0+cu124
64
  - Datasets 3.3.2
65
+ - Tokenizers 0.21.0
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-03-13T12:22:26,codecarbon,bd683362-ba46-4aa3-ac20-26f10f217d73,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22453.898297887295,0.3941647645265368,1.7554402326816636e-05,42.5,180.95528060003272,94.34470081329346,0.2648649747194387,2.8917746178622963,0.5879312872766858,3.744570879858419,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-03-14T12:42:46,codecarbon,155afa1a-97f1-41b9-834b-e3a9ff189994,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22661.234677460045,0.3979547794867827,1.756103694926242e-05,42.5,183.48305247285356,94.34470081329346,0.2672951037521426,2.919957371797352,0.5933236004390493,3.780576075988549,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5ce8bc89178be45e32536231045f6e7b831b505258727500b9776c15ad7b253b
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:250ede103058cde894c47ac0ddd2509e753c27cc128ab90c72f3c57430a355fe
3
  size 498618976