Text Classification
Transformers
Safetensors
roberta
Generated from Trainer
cedricbonhomme commited on
Commit
5b69448
·
verified ·
1 Parent(s): fd1df72

End of training

Browse files
Files changed (3) hide show
  1. README.md +16 -47
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,60 +9,29 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification
20
-
21
- # Severity classification
22
-
23
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
24
-
25
- The model was presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607).
26
-
27
- **Abstract:** VLAI is a transformer-based model that predicts software vulnerability severity levels directly from text descriptions. Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities and achieves over 82% accuracy in predicting severity categories, enabling faster and more consistent triage ahead of manual CVSS scoring. The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
28
-
29
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
30
-
31
- This model is cited in arxiv.org/abs/2507.03607.
32
 
 
 
 
 
33
 
34
  ## Model description
35
 
36
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
37
-
38
-
39
- ## How to get started with the model
40
-
41
- ```python
42
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
43
- import torch
44
-
45
- labels = ["low", "medium", "high", "critical"]
46
 
47
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
48
- tokenizer = AutoTokenizer.from_pretrained(model_name)
49
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
50
- model.eval()
51
 
52
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
53
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
54
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
55
 
56
- # Run inference
57
- with torch.no_grad():
58
- outputs = model(**inputs)
59
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
60
 
61
- # Print results
62
- print("Predictions:", predictions)
63
- predicted_class = torch.argmax(predictions, dim=-1).item()
64
- print("Predicted severity:", labels[predicted_class])
65
- ```
66
 
67
  ## Training procedure
68
 
@@ -81,11 +50,11 @@ The following hyperparameters were used during training:
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
83
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
84
- | 0.603 | 1.0 | 27953 | 0.6582 | 0.7378 |
85
- | 0.6564 | 2.0 | 55906 | 0.5723 | 0.7726 |
86
- | 0.4861 | 3.0 | 83859 | 0.5290 | 0.7975 |
87
- | 0.4009 | 4.0 | 111812 | 0.5012 | 0.8156 |
88
- | 0.3478 | 5.0 | 139765 | 0.5005 | 0.8282 |
89
 
90
 
91
  ### Framework versions
@@ -93,4 +62,4 @@ The following hyperparameters were used during training:
93
  - Transformers 4.51.3
94
  - Pytorch 2.7.1+cu126
95
  - Datasets 3.6.0
96
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # vulnerability-severity-classification-roberta-base
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5084
22
+ - Accuracy: 0.8277
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
33
 
34
+ More information needed
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.5976 | 1.0 | 27995 | 0.6547 | 0.7422 |
54
+ | 0.4254 | 2.0 | 55990 | 0.5822 | 0.7759 |
55
+ | 0.5858 | 3.0 | 83985 | 0.5263 | 0.7982 |
56
+ | 0.4801 | 4.0 | 111980 | 0.5008 | 0.8184 |
57
+ | 0.3388 | 5.0 | 139975 | 0.5084 | 0.8277 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.1+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-07-12T00:16:13,codecarbon,55180375-7bba-4fbc-bdc7-e323bc521848,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33262.71693833545,0.6005853656266635,1.8055812059491925e-05,42.5,373.5268909024996,94.34468364715576,0.3924591785186284,4.441933271877076,0.8711770814119051,5.705569531807601,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-07-16T18:02:09,codecarbon,3f10a17e-3bd2-450f-96e0-0578c31ff090,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33548.023177720606,0.6049317711968585,1.8031815704676047e-05,42.5,407.60668468427133,94.34468364715576,0.3958289673632734,4.472373492618146,0.878657986679406,5.746860446660825,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:22b5c02f294fa03a2dd2006639c8784fbfbef95eea7782b8255586acccc9351b
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:423157749697f9a570feec8e51fdd15d7174e928234a322897ab94a0f3ce7fe2
3
  size 498618976