Text Classification
Transformers
Safetensors
roberta
Generated from Trainer
cedricbonhomme commited on
Commit
aa45c47
·
verified ·
1 Parent(s): 4b29a41

End of training

Browse files
Files changed (2) hide show
  1. README.md +14 -43
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,49 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
24
-
25
- This model is cited in arxiv.org/abs/2507.03607.
26
-
27
  It achieves the following results on the evaluation set:
28
- - Loss: 0.5060
29
- - Accuracy: 0.8229
30
 
31
  ## Model description
32
 
33
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
34
-
35
-
36
- ## How to get started with the model
37
-
38
- ```python
39
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
40
- import torch
41
-
42
- labels = ["low", "medium", "high", "critical"]
43
-
44
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
45
- tokenizer = AutoTokenizer.from_pretrained(model_name)
46
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
47
- model.eval()
48
 
49
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
50
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
51
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
52
 
53
- # Run inference
54
- with torch.no_grad():
55
- outputs = model(**inputs)
56
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
57
 
58
- # Print results
59
- print("Predictions:", predictions)
60
- predicted_class = torch.argmax(predictions, dim=-1).item()
61
- print("Predicted severity:", labels[predicted_class])
62
- ```
63
 
 
64
 
65
  ## Training procedure
66
 
@@ -79,11 +50,11 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
81
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
82
- | 0.8163 | 1.0 | 27850 | 0.6419 | 0.7376 |
83
- | 0.5531 | 2.0 | 55700 | 0.5674 | 0.7754 |
84
- | 0.5027 | 3.0 | 83550 | 0.5263 | 0.7974 |
85
- | 0.4098 | 4.0 | 111400 | 0.5043 | 0.8148 |
86
- | 0.3837 | 5.0 | 139250 | 0.5060 | 0.8229 |
87
 
88
 
89
  ### Framework versions
@@ -91,4 +62,4 @@ The following hyperparameters were used during training:
91
  - Transformers 4.51.3
92
  - Pytorch 2.7.1+cu126
93
  - Datasets 3.6.0
94
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
 
 
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5005
22
+ - Accuracy: 0.8282
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
 
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.603 | 1.0 | 27953 | 0.6582 | 0.7378 |
54
+ | 0.6564 | 2.0 | 55906 | 0.5723 | 0.7726 |
55
+ | 0.4861 | 3.0 | 83859 | 0.5290 | 0.7975 |
56
+ | 0.4009 | 4.0 | 111812 | 0.5012 | 0.8156 |
57
+ | 0.3478 | 5.0 | 139765 | 0.5005 | 0.8282 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.1+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-07-07T21:23:07,codecarbon,381fbea1-6570-4390-8262-f75c75d3aa7d,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33340.39885561541,0.6016958014053166,1.80470486874207e-05,42.5,397.2744797889752,94.34468364715576,0.39337173612516807,4.449542442964457,0.8732045084389319,5.716118687528539,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-07-12T00:16:13,codecarbon,55180375-7bba-4fbc-bdc7-e323bc521848,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33262.71693833545,0.6005853656266635,1.8055812059491925e-05,42.5,373.5268909024996,94.34468364715576,0.3924591785186284,4.441933271877076,0.8711770814119051,5.705569531807601,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0