Text Classification
Transformers
Safetensors
roberta
Generated from Trainer
cedricbonhomme commited on
Commit
c12c1b1
·
verified ·
1 Parent(s): 43bc5f3

End of training

Browse files
Files changed (3) hide show
  1. README.md +14 -47
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,62 +9,29 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification
20
-
21
- # Severity classification
22
-
23
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
24
-
25
- The model was presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607) [[arXiv](https://arxiv.org/abs/2507.03607)].
26
-
27
- **Abstract:** VLAI is a transformer-based model that predicts software vulnerability severity levels directly from text descriptions. Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities and achieves over 82% accuracy in predicting severity categories, enabling faster and more consistent triage ahead of manual CVSS scoring. The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
28
-
29
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
30
-
31
-
32
- ## Model description
33
 
 
34
  It achieves the following results on the evaluation set:
35
-
36
- - Loss: 0.5069
37
  - Accuracy: 0.8258
38
 
39
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
40
-
41
- ## How to get started with the model
42
-
43
- ```python
44
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
45
- import torch
46
 
47
- labels = ["low", "medium", "high", "critical"]
48
 
49
- model_name = "CIRCL/vulnerability-severity-classification-roberta-base"
50
- tokenizer = AutoTokenizer.from_pretrained(model_name)
51
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
52
- model.eval()
53
 
54
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
55
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
56
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
57
 
58
- # Run inference
59
- with torch.no_grad():
60
- outputs = model(**inputs)
61
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
62
 
63
- # Print results
64
- print("Predictions:", predictions)
65
- predicted_class = torch.argmax(predictions, dim=-1).item()
66
- print("Predicted severity:", labels[predicted_class])
67
- ```
68
 
69
  ## Training procedure
70
 
@@ -83,11 +50,11 @@ The following hyperparameters were used during training:
83
 
84
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
85
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
86
- | 0.7733 | 1.0 | 28058 | 0.6456 | 0.7291 |
87
- | 0.5376 | 2.0 | 56116 | 0.5883 | 0.7666 |
88
- | 0.5097 | 3.0 | 84174 | 0.5378 | 0.7916 |
89
- | 0.3979 | 4.0 | 112232 | 0.5085 | 0.8137 |
90
- | 0.4002 | 5.0 | 140290 | 0.5069 | 0.8258 |
91
 
92
 
93
  ### Framework versions
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # vulnerability-severity-classification-roberta-base
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5098
 
22
  - Accuracy: 0.8258
23
 
24
+ ## Model description
 
 
 
 
 
 
25
 
26
+ More information needed
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
33
 
34
+ More information needed
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.6421 | 1.0 | 28117 | 0.6400 | 0.7436 |
54
+ | 0.5734 | 2.0 | 56234 | 0.5903 | 0.7758 |
55
+ | 0.4304 | 3.0 | 84351 | 0.5422 | 0.7951 |
56
+ | 0.4694 | 4.0 | 112468 | 0.5055 | 0.8176 |
57
+ | 0.3141 | 5.0 | 140585 | 0.5098 | 0.8258 |
58
 
59
 
60
  ### Framework versions
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-07-21T22:00:12,codecarbon,9e190fcc-d943-4249-9457-b2c7b3d6d74c,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,34016.25193414744,0.6141203214551272,1.8053732746453423e-05,42.5,422.07712790619274,94.34468364715576,0.4013549590253197,4.541868918214419,0.8909279278116806,5.834151805051415,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-07-25T15:09:30,codecarbon,1671c5cf-d51d-4aad-994c-a149fd2d189e,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33557.31429638248,0.6052922027774613,1.803756395495311e-05,42.5,433.1611236849119,94.34468364715576,0.39593592552908535,4.47545033341288,0.8788982928707405,5.75028455181271,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b99318ea5536bd5bd16014a05d554660b03d3fa0afc15c865165435bee54b58e
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83e217187aa83126f8b246b2c7aa8b1a4cd13a2a9bac4c8f5664e72097d8dac6
3
  size 498618976