cedricbonhomme commited on
Commit
c23c750
·
verified ·
1 Parent(s): 623149d

End of training

Browse files
Files changed (2) hide show
  1. README.md +14 -38
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,44 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.5063
25
- - Accuracy: 0.8285
26
 
27
  ## Model description
28
 
29
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
30
-
31
-
32
- ## How to get started with the model
33
-
34
- ```python
35
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
36
- import torch
37
-
38
- labels = ["low", "medium", "high", "critical"]
39
-
40
- model_name = "CIRCL/vulnerability-scores"
41
- tokenizer = AutoTokenizer.from_pretrained(model_name)
42
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
43
- model.eval()
44
 
45
- test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
46
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
47
 
48
- # Run inference
49
- with torch.no_grad():
50
- outputs = model(**inputs)
51
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
52
 
 
53
 
54
- # Print results
55
- print("Predictions:", predictions)
56
- predicted_class = torch.argmax(predictions, dim=-1).item()
57
- print("Predicted severity:", labels[predicted_class])
58
- ```
59
 
60
  ## Training procedure
61
 
@@ -74,11 +50,11 @@ The following hyperparameters were used during training:
74
 
75
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
76
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
77
- | 0.5765 | 1.0 | 26137 | 0.6326 | 0.7452 |
78
- | 0.5378 | 2.0 | 52274 | 0.5672 | 0.7718 |
79
- | 0.3156 | 3.0 | 78411 | 0.5185 | 0.8026 |
80
- | 0.4264 | 4.0 | 104548 | 0.4989 | 0.8200 |
81
- | 0.3328 | 5.0 | 130685 | 0.5063 | 0.8285 |
82
 
83
 
84
  ### Framework versions
@@ -86,4 +62,4 @@ The following hyperparameters were used during training:
86
  - Transformers 4.49.0
87
  - Pytorch 2.6.0+cu124
88
  - Datasets 3.4.0
89
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5078
22
+ - Accuracy: 0.8279
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
33
 
34
+ More information needed
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.7488 | 1.0 | 26165 | 0.6294 | 0.7406 |
54
+ | 0.5932 | 2.0 | 52330 | 0.6006 | 0.7699 |
55
+ | 0.3986 | 3.0 | 78495 | 0.5378 | 0.7952 |
56
+ | 0.4782 | 4.0 | 104660 | 0.5102 | 0.8172 |
57
+ | 0.2724 | 5.0 | 130825 | 0.5078 | 0.8279 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.49.0
63
  - Pytorch 2.6.0+cu124
64
  - Datasets 3.4.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-03-18T19:43:33,codecarbon,96adf9c1-8a37-431e-a103-8149fd657b71,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22817.171325219795,0.3990832484971706,1.7490478675420397e-05,42.5,182.5595136863412,94.34470081329346,0.26915968393788736,2.9246688477888085,0.5974680159412475,3.7912965476679417,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-03-20T13:21:43,codecarbon,dd013514-38bf-4af2-95c1-8ea1bb48f668,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22678.657158810645,0.39802804660826774,1.7550776654059258e-05,42.5,186.2722255320865,94.34470081329346,0.26752504179716097,2.9199066595344902,0.5938404133550726,3.781272114686715,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-48-generic-x86_64-with-glibc2.39,3.12.3,2.8.3,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58586883544922,machine,N,1.0