Upload 3 files
Browse files- Ensemble_method.ipynb +0 -0
- Preprocess_Data.ipynb +0 -0
- Run_Ensamble.ipynb +1073 -0
Ensemble_method.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Preprocess_Data.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Run_Ensamble.ipynb
ADDED
@@ -0,0 +1,1073 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"collapsed_sections": [
|
8 |
+
"j1mFIyblvH0-"
|
9 |
+
],
|
10 |
+
"gpuType": "T4"
|
11 |
+
},
|
12 |
+
"kernelspec": {
|
13 |
+
"name": "python3",
|
14 |
+
"display_name": "Python 3"
|
15 |
+
},
|
16 |
+
"language_info": {
|
17 |
+
"name": "python"
|
18 |
+
},
|
19 |
+
"accelerator": "GPU",
|
20 |
+
"widgets": {
|
21 |
+
"application/vnd.jupyter.widget-state+json": {
|
22 |
+
"7d71deee94c64080badb10c59e3ac49b": {
|
23 |
+
"model_module": "@jupyter-widgets/controls",
|
24 |
+
"model_name": "HBoxModel",
|
25 |
+
"model_module_version": "1.5.0",
|
26 |
+
"state": {
|
27 |
+
"_dom_classes": [],
|
28 |
+
"_model_module": "@jupyter-widgets/controls",
|
29 |
+
"_model_module_version": "1.5.0",
|
30 |
+
"_model_name": "HBoxModel",
|
31 |
+
"_view_count": null,
|
32 |
+
"_view_module": "@jupyter-widgets/controls",
|
33 |
+
"_view_module_version": "1.5.0",
|
34 |
+
"_view_name": "HBoxView",
|
35 |
+
"box_style": "",
|
36 |
+
"children": [
|
37 |
+
"IPY_MODEL_013d6d22ebe04ebda019d9bf2e7e135d",
|
38 |
+
"IPY_MODEL_dd04535976844f3b82bd58020d30acb7",
|
39 |
+
"IPY_MODEL_a02104842c0a4b24adfc413f59d84fc0"
|
40 |
+
],
|
41 |
+
"layout": "IPY_MODEL_94cb76a011a94602b4192f8e6e7142a4"
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"013d6d22ebe04ebda019d9bf2e7e135d": {
|
45 |
+
"model_module": "@jupyter-widgets/controls",
|
46 |
+
"model_name": "HTMLModel",
|
47 |
+
"model_module_version": "1.5.0",
|
48 |
+
"state": {
|
49 |
+
"_dom_classes": [],
|
50 |
+
"_model_module": "@jupyter-widgets/controls",
|
51 |
+
"_model_module_version": "1.5.0",
|
52 |
+
"_model_name": "HTMLModel",
|
53 |
+
"_view_count": null,
|
54 |
+
"_view_module": "@jupyter-widgets/controls",
|
55 |
+
"_view_module_version": "1.5.0",
|
56 |
+
"_view_name": "HTMLView",
|
57 |
+
"description": "",
|
58 |
+
"description_tooltip": null,
|
59 |
+
"layout": "IPY_MODEL_80d6e5f3592f440db67765ee24e83ccc",
|
60 |
+
"placeholder": "",
|
61 |
+
"style": "IPY_MODEL_9b8c527888bd4721a6a4387797fc7ba0",
|
62 |
+
"value": "ensemble_model.pkl: 100%"
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"dd04535976844f3b82bd58020d30acb7": {
|
66 |
+
"model_module": "@jupyter-widgets/controls",
|
67 |
+
"model_name": "FloatProgressModel",
|
68 |
+
"model_module_version": "1.5.0",
|
69 |
+
"state": {
|
70 |
+
"_dom_classes": [],
|
71 |
+
"_model_module": "@jupyter-widgets/controls",
|
72 |
+
"_model_module_version": "1.5.0",
|
73 |
+
"_model_name": "FloatProgressModel",
|
74 |
+
"_view_count": null,
|
75 |
+
"_view_module": "@jupyter-widgets/controls",
|
76 |
+
"_view_module_version": "1.5.0",
|
77 |
+
"_view_name": "ProgressView",
|
78 |
+
"bar_style": "success",
|
79 |
+
"description": "",
|
80 |
+
"description_tooltip": null,
|
81 |
+
"layout": "IPY_MODEL_ed88c4a913d849a1a8222668aca3b1a0",
|
82 |
+
"max": 278892144,
|
83 |
+
"min": 0,
|
84 |
+
"orientation": "horizontal",
|
85 |
+
"style": "IPY_MODEL_52921704988a4cd49196eaab6a858268",
|
86 |
+
"value": 278892144
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"a02104842c0a4b24adfc413f59d84fc0": {
|
90 |
+
"model_module": "@jupyter-widgets/controls",
|
91 |
+
"model_name": "HTMLModel",
|
92 |
+
"model_module_version": "1.5.0",
|
93 |
+
"state": {
|
94 |
+
"_dom_classes": [],
|
95 |
+
"_model_module": "@jupyter-widgets/controls",
|
96 |
+
"_model_module_version": "1.5.0",
|
97 |
+
"_model_name": "HTMLModel",
|
98 |
+
"_view_count": null,
|
99 |
+
"_view_module": "@jupyter-widgets/controls",
|
100 |
+
"_view_module_version": "1.5.0",
|
101 |
+
"_view_name": "HTMLView",
|
102 |
+
"description": "",
|
103 |
+
"description_tooltip": null,
|
104 |
+
"layout": "IPY_MODEL_256010fb44964c1fabc7d96d5ea4c644",
|
105 |
+
"placeholder": "",
|
106 |
+
"style": "IPY_MODEL_91b2880b6eea4ba7b6a96a97c3fb8060",
|
107 |
+
"value": " 279M/279M [00:12<00:00, 23.6MB/s]"
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"94cb76a011a94602b4192f8e6e7142a4": {
|
111 |
+
"model_module": "@jupyter-widgets/base",
|
112 |
+
"model_name": "LayoutModel",
|
113 |
+
"model_module_version": "1.2.0",
|
114 |
+
"state": {
|
115 |
+
"_model_module": "@jupyter-widgets/base",
|
116 |
+
"_model_module_version": "1.2.0",
|
117 |
+
"_model_name": "LayoutModel",
|
118 |
+
"_view_count": null,
|
119 |
+
"_view_module": "@jupyter-widgets/base",
|
120 |
+
"_view_module_version": "1.2.0",
|
121 |
+
"_view_name": "LayoutView",
|
122 |
+
"align_content": null,
|
123 |
+
"align_items": null,
|
124 |
+
"align_self": null,
|
125 |
+
"border": null,
|
126 |
+
"bottom": null,
|
127 |
+
"display": null,
|
128 |
+
"flex": null,
|
129 |
+
"flex_flow": null,
|
130 |
+
"grid_area": null,
|
131 |
+
"grid_auto_columns": null,
|
132 |
+
"grid_auto_flow": null,
|
133 |
+
"grid_auto_rows": null,
|
134 |
+
"grid_column": null,
|
135 |
+
"grid_gap": null,
|
136 |
+
"grid_row": null,
|
137 |
+
"grid_template_areas": null,
|
138 |
+
"grid_template_columns": null,
|
139 |
+
"grid_template_rows": null,
|
140 |
+
"height": null,
|
141 |
+
"justify_content": null,
|
142 |
+
"justify_items": null,
|
143 |
+
"left": null,
|
144 |
+
"margin": null,
|
145 |
+
"max_height": null,
|
146 |
+
"max_width": null,
|
147 |
+
"min_height": null,
|
148 |
+
"min_width": null,
|
149 |
+
"object_fit": null,
|
150 |
+
"object_position": null,
|
151 |
+
"order": null,
|
152 |
+
"overflow": null,
|
153 |
+
"overflow_x": null,
|
154 |
+
"overflow_y": null,
|
155 |
+
"padding": null,
|
156 |
+
"right": null,
|
157 |
+
"top": null,
|
158 |
+
"visibility": null,
|
159 |
+
"width": null
|
160 |
+
}
|
161 |
+
},
|
162 |
+
"80d6e5f3592f440db67765ee24e83ccc": {
|
163 |
+
"model_module": "@jupyter-widgets/base",
|
164 |
+
"model_name": "LayoutModel",
|
165 |
+
"model_module_version": "1.2.0",
|
166 |
+
"state": {
|
167 |
+
"_model_module": "@jupyter-widgets/base",
|
168 |
+
"_model_module_version": "1.2.0",
|
169 |
+
"_model_name": "LayoutModel",
|
170 |
+
"_view_count": null,
|
171 |
+
"_view_module": "@jupyter-widgets/base",
|
172 |
+
"_view_module_version": "1.2.0",
|
173 |
+
"_view_name": "LayoutView",
|
174 |
+
"align_content": null,
|
175 |
+
"align_items": null,
|
176 |
+
"align_self": null,
|
177 |
+
"border": null,
|
178 |
+
"bottom": null,
|
179 |
+
"display": null,
|
180 |
+
"flex": null,
|
181 |
+
"flex_flow": null,
|
182 |
+
"grid_area": null,
|
183 |
+
"grid_auto_columns": null,
|
184 |
+
"grid_auto_flow": null,
|
185 |
+
"grid_auto_rows": null,
|
186 |
+
"grid_column": null,
|
187 |
+
"grid_gap": null,
|
188 |
+
"grid_row": null,
|
189 |
+
"grid_template_areas": null,
|
190 |
+
"grid_template_columns": null,
|
191 |
+
"grid_template_rows": null,
|
192 |
+
"height": null,
|
193 |
+
"justify_content": null,
|
194 |
+
"justify_items": null,
|
195 |
+
"left": null,
|
196 |
+
"margin": null,
|
197 |
+
"max_height": null,
|
198 |
+
"max_width": null,
|
199 |
+
"min_height": null,
|
200 |
+
"min_width": null,
|
201 |
+
"object_fit": null,
|
202 |
+
"object_position": null,
|
203 |
+
"order": null,
|
204 |
+
"overflow": null,
|
205 |
+
"overflow_x": null,
|
206 |
+
"overflow_y": null,
|
207 |
+
"padding": null,
|
208 |
+
"right": null,
|
209 |
+
"top": null,
|
210 |
+
"visibility": null,
|
211 |
+
"width": null
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"9b8c527888bd4721a6a4387797fc7ba0": {
|
215 |
+
"model_module": "@jupyter-widgets/controls",
|
216 |
+
"model_name": "DescriptionStyleModel",
|
217 |
+
"model_module_version": "1.5.0",
|
218 |
+
"state": {
|
219 |
+
"_model_module": "@jupyter-widgets/controls",
|
220 |
+
"_model_module_version": "1.5.0",
|
221 |
+
"_model_name": "DescriptionStyleModel",
|
222 |
+
"_view_count": null,
|
223 |
+
"_view_module": "@jupyter-widgets/base",
|
224 |
+
"_view_module_version": "1.2.0",
|
225 |
+
"_view_name": "StyleView",
|
226 |
+
"description_width": ""
|
227 |
+
}
|
228 |
+
},
|
229 |
+
"ed88c4a913d849a1a8222668aca3b1a0": {
|
230 |
+
"model_module": "@jupyter-widgets/base",
|
231 |
+
"model_name": "LayoutModel",
|
232 |
+
"model_module_version": "1.2.0",
|
233 |
+
"state": {
|
234 |
+
"_model_module": "@jupyter-widgets/base",
|
235 |
+
"_model_module_version": "1.2.0",
|
236 |
+
"_model_name": "LayoutModel",
|
237 |
+
"_view_count": null,
|
238 |
+
"_view_module": "@jupyter-widgets/base",
|
239 |
+
"_view_module_version": "1.2.0",
|
240 |
+
"_view_name": "LayoutView",
|
241 |
+
"align_content": null,
|
242 |
+
"align_items": null,
|
243 |
+
"align_self": null,
|
244 |
+
"border": null,
|
245 |
+
"bottom": null,
|
246 |
+
"display": null,
|
247 |
+
"flex": null,
|
248 |
+
"flex_flow": null,
|
249 |
+
"grid_area": null,
|
250 |
+
"grid_auto_columns": null,
|
251 |
+
"grid_auto_flow": null,
|
252 |
+
"grid_auto_rows": null,
|
253 |
+
"grid_column": null,
|
254 |
+
"grid_gap": null,
|
255 |
+
"grid_row": null,
|
256 |
+
"grid_template_areas": null,
|
257 |
+
"grid_template_columns": null,
|
258 |
+
"grid_template_rows": null,
|
259 |
+
"height": null,
|
260 |
+
"justify_content": null,
|
261 |
+
"justify_items": null,
|
262 |
+
"left": null,
|
263 |
+
"margin": null,
|
264 |
+
"max_height": null,
|
265 |
+
"max_width": null,
|
266 |
+
"min_height": null,
|
267 |
+
"min_width": null,
|
268 |
+
"object_fit": null,
|
269 |
+
"object_position": null,
|
270 |
+
"order": null,
|
271 |
+
"overflow": null,
|
272 |
+
"overflow_x": null,
|
273 |
+
"overflow_y": null,
|
274 |
+
"padding": null,
|
275 |
+
"right": null,
|
276 |
+
"top": null,
|
277 |
+
"visibility": null,
|
278 |
+
"width": null
|
279 |
+
}
|
280 |
+
},
|
281 |
+
"52921704988a4cd49196eaab6a858268": {
|
282 |
+
"model_module": "@jupyter-widgets/controls",
|
283 |
+
"model_name": "ProgressStyleModel",
|
284 |
+
"model_module_version": "1.5.0",
|
285 |
+
"state": {
|
286 |
+
"_model_module": "@jupyter-widgets/controls",
|
287 |
+
"_model_module_version": "1.5.0",
|
288 |
+
"_model_name": "ProgressStyleModel",
|
289 |
+
"_view_count": null,
|
290 |
+
"_view_module": "@jupyter-widgets/base",
|
291 |
+
"_view_module_version": "1.2.0",
|
292 |
+
"_view_name": "StyleView",
|
293 |
+
"bar_color": null,
|
294 |
+
"description_width": ""
|
295 |
+
}
|
296 |
+
},
|
297 |
+
"256010fb44964c1fabc7d96d5ea4c644": {
|
298 |
+
"model_module": "@jupyter-widgets/base",
|
299 |
+
"model_name": "LayoutModel",
|
300 |
+
"model_module_version": "1.2.0",
|
301 |
+
"state": {
|
302 |
+
"_model_module": "@jupyter-widgets/base",
|
303 |
+
"_model_module_version": "1.2.0",
|
304 |
+
"_model_name": "LayoutModel",
|
305 |
+
"_view_count": null,
|
306 |
+
"_view_module": "@jupyter-widgets/base",
|
307 |
+
"_view_module_version": "1.2.0",
|
308 |
+
"_view_name": "LayoutView",
|
309 |
+
"align_content": null,
|
310 |
+
"align_items": null,
|
311 |
+
"align_self": null,
|
312 |
+
"border": null,
|
313 |
+
"bottom": null,
|
314 |
+
"display": null,
|
315 |
+
"flex": null,
|
316 |
+
"flex_flow": null,
|
317 |
+
"grid_area": null,
|
318 |
+
"grid_auto_columns": null,
|
319 |
+
"grid_auto_flow": null,
|
320 |
+
"grid_auto_rows": null,
|
321 |
+
"grid_column": null,
|
322 |
+
"grid_gap": null,
|
323 |
+
"grid_row": null,
|
324 |
+
"grid_template_areas": null,
|
325 |
+
"grid_template_columns": null,
|
326 |
+
"grid_template_rows": null,
|
327 |
+
"height": null,
|
328 |
+
"justify_content": null,
|
329 |
+
"justify_items": null,
|
330 |
+
"left": null,
|
331 |
+
"margin": null,
|
332 |
+
"max_height": null,
|
333 |
+
"max_width": null,
|
334 |
+
"min_height": null,
|
335 |
+
"min_width": null,
|
336 |
+
"object_fit": null,
|
337 |
+
"object_position": null,
|
338 |
+
"order": null,
|
339 |
+
"overflow": null,
|
340 |
+
"overflow_x": null,
|
341 |
+
"overflow_y": null,
|
342 |
+
"padding": null,
|
343 |
+
"right": null,
|
344 |
+
"top": null,
|
345 |
+
"visibility": null,
|
346 |
+
"width": null
|
347 |
+
}
|
348 |
+
},
|
349 |
+
"91b2880b6eea4ba7b6a96a97c3fb8060": {
|
350 |
+
"model_module": "@jupyter-widgets/controls",
|
351 |
+
"model_name": "DescriptionStyleModel",
|
352 |
+
"model_module_version": "1.5.0",
|
353 |
+
"state": {
|
354 |
+
"_model_module": "@jupyter-widgets/controls",
|
355 |
+
"_model_module_version": "1.5.0",
|
356 |
+
"_model_name": "DescriptionStyleModel",
|
357 |
+
"_view_count": null,
|
358 |
+
"_view_module": "@jupyter-widgets/base",
|
359 |
+
"_view_module_version": "1.2.0",
|
360 |
+
"_view_name": "StyleView",
|
361 |
+
"description_width": ""
|
362 |
+
}
|
363 |
+
}
|
364 |
+
}
|
365 |
+
}
|
366 |
+
},
|
367 |
+
"cells": [
|
368 |
+
{
|
369 |
+
"cell_type": "markdown",
|
370 |
+
"source": [
|
371 |
+
"# Imports and Classes"
|
372 |
+
],
|
373 |
+
"metadata": {
|
374 |
+
"id": "j1mFIyblvH0-"
|
375 |
+
}
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"source": [
|
380 |
+
"!pip install huggingface-hub\n",
|
381 |
+
"!pip install datasets > delete.txt"
|
382 |
+
],
|
383 |
+
"metadata": {
|
384 |
+
"colab": {
|
385 |
+
"base_uri": "https://localhost:8080/"
|
386 |
+
},
|
387 |
+
"id": "N0MB1E-_udRx",
|
388 |
+
"outputId": "3b240262-b2e5-43f5-d037-c8459ab5ad1f"
|
389 |
+
},
|
390 |
+
"execution_count": 14,
|
391 |
+
"outputs": [
|
392 |
+
{
|
393 |
+
"output_type": "stream",
|
394 |
+
"name": "stdout",
|
395 |
+
"text": [
|
396 |
+
"Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (0.26.3)\n",
|
397 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (3.16.1)\n",
|
398 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (2024.10.0)\n",
|
399 |
+
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (24.2)\n",
|
400 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (6.0.2)\n",
|
401 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (2.32.3)\n",
|
402 |
+
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (4.66.6)\n",
|
403 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (4.12.2)\n",
|
404 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (3.4.0)\n",
|
405 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (3.10)\n",
|
406 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (2.2.3)\n",
|
407 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (2024.8.30)\n",
|
408 |
+
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
409 |
+
"gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
410 |
+
"\u001b[0m"
|
411 |
+
]
|
412 |
+
}
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "code",
|
417 |
+
"execution_count": 24,
|
418 |
+
"metadata": {
|
419 |
+
"id": "0MwL3yauuB8m"
|
420 |
+
},
|
421 |
+
"outputs": [],
|
422 |
+
"source": [
|
423 |
+
"import torch\n",
|
424 |
+
"import pickle\n",
|
425 |
+
"from huggingface_hub import hf_hub_download\n",
|
426 |
+
"from datasets import load_dataset, Image\n",
|
427 |
+
"import torch\n",
|
428 |
+
"from torch import nn, optim\n",
|
429 |
+
"from torch.utils.data import DataLoader, Dataset\n",
|
430 |
+
"import numpy as np"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"source": [
|
436 |
+
"# change runtype to GPU\n",
|
437 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
438 |
+
"print(device)"
|
439 |
+
],
|
440 |
+
"metadata": {
|
441 |
+
"colab": {
|
442 |
+
"base_uri": "https://localhost:8080/"
|
443 |
+
},
|
444 |
+
"id": "6saYtLslw95c",
|
445 |
+
"outputId": "e7d16fae-e5dd-452e-c80b-ed823258a322"
|
446 |
+
},
|
447 |
+
"execution_count": 3,
|
448 |
+
"outputs": [
|
449 |
+
{
|
450 |
+
"output_type": "stream",
|
451 |
+
"name": "stdout",
|
452 |
+
"text": [
|
453 |
+
"cuda\n"
|
454 |
+
]
|
455 |
+
}
|
456 |
+
]
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"cell_type": "code",
|
460 |
+
"source": [
|
461 |
+
"class CNNModel1(nn.Module):\n",
|
462 |
+
" def __init__(self, num_outputs=2):\n",
|
463 |
+
" super(CNNModel1, self).__init__()\n",
|
464 |
+
" self.features = nn.Sequential(\n",
|
465 |
+
" nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),\n",
|
466 |
+
" nn.ReLU(inplace=True),\n",
|
467 |
+
" nn.MaxPool2d(kernel_size=3, stride=2),\n",
|
468 |
+
" nn.BatchNorm2d(64),\n",
|
469 |
+
" nn.Conv2d(64, 192, kernel_size=5, padding=2),\n",
|
470 |
+
" nn.ReLU(inplace=True),\n",
|
471 |
+
" nn.MaxPool2d(kernel_size=3, stride=2),\n",
|
472 |
+
" nn.BatchNorm2d(192),\n",
|
473 |
+
" nn.Conv2d(192, 384, kernel_size=3, padding=1),\n",
|
474 |
+
" nn.ReLU(inplace=True),\n",
|
475 |
+
" nn.Conv2d(384, 256, kernel_size=3, padding=1),\n",
|
476 |
+
" nn.ReLU(inplace=True),\n",
|
477 |
+
" nn.Conv2d(256, 256, kernel_size=3, padding=1),\n",
|
478 |
+
" nn.ReLU(inplace=True),\n",
|
479 |
+
" nn.MaxPool2d(kernel_size=3, stride=2)\n",
|
480 |
+
" )\n",
|
481 |
+
" self.classifier = nn.Sequential(\n",
|
482 |
+
" nn.Dropout(),\n",
|
483 |
+
" nn.Linear(256 * 6 * 6, 4096),\n",
|
484 |
+
" nn.ReLU(inplace=True),\n",
|
485 |
+
" nn.Dropout(),\n",
|
486 |
+
" nn.Linear(4096, 4096),\n",
|
487 |
+
" nn.ReLU(inplace=True),\n",
|
488 |
+
" nn.Linear(4096, num_outputs)\n",
|
489 |
+
" )\n",
|
490 |
+
"\n",
|
491 |
+
" def forward(self, x):\n",
|
492 |
+
" x = self.features(x)\n",
|
493 |
+
" x = x.view(x.size(0), -1)\n",
|
494 |
+
" x = self.classifier(x)\n",
|
495 |
+
" return x"
|
496 |
+
],
|
497 |
+
"metadata": {
|
498 |
+
"id": "CPaE895Quyrt"
|
499 |
+
},
|
500 |
+
"execution_count": 4,
|
501 |
+
"outputs": []
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"cell_type": "code",
|
505 |
+
"source": [
|
506 |
+
"class ResidualBlock(nn.Module):\n",
|
507 |
+
" def __init__(self, in_channels, out_channels, stride=1, downsample=None):\n",
|
508 |
+
" super(ResidualBlock, self).__init__()\n",
|
509 |
+
" self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)\n",
|
510 |
+
" self.bn1 = nn.BatchNorm2d(out_channels)\n",
|
511 |
+
" self.relu = nn.ReLU(inplace=True)\n",
|
512 |
+
" self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)\n",
|
513 |
+
" self.bn2 = nn.BatchNorm2d(out_channels)\n",
|
514 |
+
" self.downsample = downsample\n",
|
515 |
+
"\n",
|
516 |
+
" def forward(self, x):\n",
|
517 |
+
" identity = x\n",
|
518 |
+
" if self.downsample:\n",
|
519 |
+
" identity = self.downsample(x)\n",
|
520 |
+
" out = self.conv1(x)\n",
|
521 |
+
" out = self.bn1(out)\n",
|
522 |
+
" out = self.relu(out)\n",
|
523 |
+
" out = self.conv2(out)\n",
|
524 |
+
" out = self.bn2(out)\n",
|
525 |
+
" out += identity\n",
|
526 |
+
" out = self.relu(out)\n",
|
527 |
+
" return out\n",
|
528 |
+
"\n",
|
529 |
+
"class CNNModel2(nn.Module):\n",
|
530 |
+
" def __init__(self, num_outputs=2):\n",
|
531 |
+
" super(CNNModel2, self).__init__()\n",
|
532 |
+
" self.in_channels = 64\n",
|
533 |
+
" self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)\n",
|
534 |
+
" self.bn1 = nn.BatchNorm2d(64)\n",
|
535 |
+
" self.relu = nn.ReLU(inplace=True)\n",
|
536 |
+
" self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)\n",
|
537 |
+
"\n",
|
538 |
+
" self.layer1 = self._make_layer(64, 2, stride=1)\n",
|
539 |
+
" self.layer2 = self._make_layer(128, 2, stride=2)\n",
|
540 |
+
" self.layer3 = self._make_layer(256, 2, stride=2)\n",
|
541 |
+
" self.layer4 = self._make_layer(512, 2, stride=2)\n",
|
542 |
+
"\n",
|
543 |
+
" self.avgpool = nn.AdaptiveAvgPool2d((1, 1))\n",
|
544 |
+
" self.fc = nn.Linear(512, num_outputs)\n",
|
545 |
+
"\n",
|
546 |
+
" def _make_layer(self, out_channels, blocks, stride):\n",
|
547 |
+
" downsample = None\n",
|
548 |
+
" if stride != 1 or self.in_channels != out_channels:\n",
|
549 |
+
" downsample = nn.Sequential(\n",
|
550 |
+
" nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride),\n",
|
551 |
+
" nn.BatchNorm2d(out_channels)\n",
|
552 |
+
" )\n",
|
553 |
+
" layers = []\n",
|
554 |
+
" layers.append(ResidualBlock(self.in_channels, out_channels, stride, downsample))\n",
|
555 |
+
" self.in_channels = out_channels\n",
|
556 |
+
" for _ in range(1, blocks):\n",
|
557 |
+
" layers.append(ResidualBlock(out_channels, out_channels))\n",
|
558 |
+
" return nn.Sequential(*layers)\n",
|
559 |
+
"\n",
|
560 |
+
" def forward(self, x):\n",
|
561 |
+
" x = self.conv1(x)\n",
|
562 |
+
" x = self.bn1(x)\n",
|
563 |
+
" x = self.relu(x)\n",
|
564 |
+
" x = self.maxpool(x)\n",
|
565 |
+
" x = self.layer1(x)\n",
|
566 |
+
" x = self.layer2(x)\n",
|
567 |
+
" x = self.layer3(x)\n",
|
568 |
+
" x = self.layer4(x)\n",
|
569 |
+
" x = self.avgpool(x)\n",
|
570 |
+
" x = x.view(x.size(0), -1)\n",
|
571 |
+
" x = self.fc(x)\n",
|
572 |
+
" return x"
|
573 |
+
],
|
574 |
+
"metadata": {
|
575 |
+
"id": "BqqtP1WtuTF0"
|
576 |
+
},
|
577 |
+
"execution_count": 5,
|
578 |
+
"outputs": []
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"source": [
|
583 |
+
"class InceptionModule(nn.Module):\n",
|
584 |
+
" def __init__(self, in_channels, ch1x1, ch3x3_reduce, ch3x3, ch5x5_reduce, ch5x5, pool_proj):\n",
|
585 |
+
" super(InceptionModule, self).__init__()\n",
|
586 |
+
" self.branch1 = nn.Sequential(\n",
|
587 |
+
" nn.Conv2d(in_channels, ch1x1, kernel_size=1),\n",
|
588 |
+
" nn.ReLU(inplace=True)\n",
|
589 |
+
" )\n",
|
590 |
+
" self.branch2 = nn.Sequential(\n",
|
591 |
+
" nn.Conv2d(in_channels, ch3x3_reduce, kernel_size=1),\n",
|
592 |
+
" nn.ReLU(inplace=True),\n",
|
593 |
+
" nn.Conv2d(ch3x3_reduce, ch3x3, kernel_size=3, padding=1),\n",
|
594 |
+
" nn.ReLU(inplace=True)\n",
|
595 |
+
" )\n",
|
596 |
+
" self.branch3 = nn.Sequential(\n",
|
597 |
+
" nn.Conv2d(in_channels, ch5x5_reduce, kernel_size=1),\n",
|
598 |
+
" nn.ReLU(inplace=True),\n",
|
599 |
+
" nn.Conv2d(ch5x5_reduce, ch5x5, kernel_size=5, padding=2),\n",
|
600 |
+
" nn.ReLU(inplace=True)\n",
|
601 |
+
" )\n",
|
602 |
+
" self.branch4 = nn.Sequential(\n",
|
603 |
+
" nn.MaxPool2d(kernel_size=3, stride=1, padding=1),\n",
|
604 |
+
" nn.Conv2d(in_channels, pool_proj, kernel_size=1),\n",
|
605 |
+
" nn.ReLU(inplace=True)\n",
|
606 |
+
" )\n",
|
607 |
+
"\n",
|
608 |
+
" def forward(self, x):\n",
|
609 |
+
" branch1 = self.branch1(x)\n",
|
610 |
+
" branch2 = self.branch2(x)\n",
|
611 |
+
" branch3 = self.branch3(x)\n",
|
612 |
+
" branch4 = self.branch4(x)\n",
|
613 |
+
" outputs = torch.cat([branch1, branch2, branch3, branch4], 1)\n",
|
614 |
+
" return outputs\n",
|
615 |
+
"\n",
|
616 |
+
"class CNNModel3(nn.Module):\n",
|
617 |
+
" def __init__(self, num_outputs=2):\n",
|
618 |
+
" super(CNNModel3, self).__init__()\n",
|
619 |
+
" self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)\n",
|
620 |
+
" self.maxpool1 = nn.MaxPool2d(3, stride=2)\n",
|
621 |
+
" self.conv2 = nn.Conv2d(64, 192, kernel_size=3, padding=1)\n",
|
622 |
+
" self.maxpool2 = nn.MaxPool2d(3, stride=2)\n",
|
623 |
+
"\n",
|
624 |
+
" self.inception3a = InceptionModule(192, 64, 96, 128, 16, 32, 32)\n",
|
625 |
+
" self.inception3b = InceptionModule(256, 128, 128, 192, 32, 96, 64)\n",
|
626 |
+
" self.maxpool3 = nn.MaxPool2d(3, stride=2)\n",
|
627 |
+
"\n",
|
628 |
+
" self.inception4a = InceptionModule(480, 192, 96, 208, 16, 48, 64)\n",
|
629 |
+
" self.inception4b = InceptionModule(512, 160, 112, 224, 24, 64, 64)\n",
|
630 |
+
" self.maxpool4 = nn.MaxPool2d(3, stride=2)\n",
|
631 |
+
"\n",
|
632 |
+
" self.avgpool = nn.AdaptiveAvgPool2d((1, 1))\n",
|
633 |
+
" self.dropout = nn.Dropout(0.4)\n",
|
634 |
+
" self.fc = nn.Linear(512, num_outputs)\n",
|
635 |
+
"\n",
|
636 |
+
" def forward(self, x):\n",
|
637 |
+
" x = self.conv1(x)\n",
|
638 |
+
" x = self.maxpool1(x)\n",
|
639 |
+
" x = self.conv2(x)\n",
|
640 |
+
" x = self.maxpool2(x)\n",
|
641 |
+
" x = self.inception3a(x)\n",
|
642 |
+
" x = self.inception3b(x)\n",
|
643 |
+
" x = self.maxpool3(x)\n",
|
644 |
+
" x = self.inception4a(x)\n",
|
645 |
+
" x = self.inception4b(x)\n",
|
646 |
+
" x = self.maxpool4(x)\n",
|
647 |
+
" x = self.avgpool(x)\n",
|
648 |
+
" x = x.view(x.size(0), -1)\n",
|
649 |
+
" x = self.dropout(x)\n",
|
650 |
+
" x = self.fc(x)\n",
|
651 |
+
" return x"
|
652 |
+
],
|
653 |
+
"metadata": {
|
654 |
+
"id": "LSc0Yyzau5y1"
|
655 |
+
},
|
656 |
+
"execution_count": 6,
|
657 |
+
"outputs": []
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"cell_type": "code",
|
661 |
+
"source": [
|
662 |
+
"from torch.utils.data import Dataset\n",
|
663 |
+
"class GPSImageDataset(Dataset):\n",
|
664 |
+
" def __init__(self, hf_dataset, transform, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):\n",
|
665 |
+
" self.hf_dataset = hf_dataset\n",
|
666 |
+
" self.transform = transform\n",
|
667 |
+
"\n",
|
668 |
+
" # Normalize the latitude and longitude\n",
|
669 |
+
" self.latitudes = np.array(hf_dataset['Latitude'])\n",
|
670 |
+
" self.longitudes = np.array(hf_dataset['Longitude'])\n",
|
671 |
+
" self.latitude_mean = lat_mean if lat_mean is not None else self.latitudes.mean()\n",
|
672 |
+
" self.latitude_std = lat_std if lat_std is not None else self.latitudes.std()\n",
|
673 |
+
" self.longitude_mean = lon_mean if lon_mean is not None else self.longitudes.mean()\n",
|
674 |
+
" self.longitude_std = lon_std if lon_std is not None else self.longitudes.std()\n",
|
675 |
+
"\n",
|
676 |
+
" self.normalized_latitudes = (self.latitudes - self.latitude_mean) / self.latitude_std\n",
|
677 |
+
" self.normalized_longitudes = (self.longitudes - self.longitude_mean) / self.longitude_std\n",
|
678 |
+
"\n",
|
679 |
+
" def __len__(self):\n",
|
680 |
+
" return len(self.hf_dataset)\n",
|
681 |
+
"\n",
|
682 |
+
" def __getitem__(self, idx):\n",
|
683 |
+
" image = self.hf_dataset[idx]['image']\n",
|
684 |
+
" latitude = self.normalized_latitudes[idx]\n",
|
685 |
+
" longitude = self.normalized_longitudes[idx]\n",
|
686 |
+
"\n",
|
687 |
+
" if self.transform:\n",
|
688 |
+
" image = self.transform(image)\n",
|
689 |
+
"\n",
|
690 |
+
" return image, torch.tensor([latitude, longitude], dtype=torch.float)"
|
691 |
+
],
|
692 |
+
"metadata": {
|
693 |
+
"id": "QXwlWCWazwGB"
|
694 |
+
},
|
695 |
+
"execution_count": 20,
|
696 |
+
"outputs": []
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"cell_type": "code",
|
700 |
+
"source": [
|
701 |
+
"from torchvision import transforms, models\n",
|
702 |
+
"transform = transforms.Compose([\n",
|
703 |
+
" transforms.RandomResizedCrop(224),\n",
|
704 |
+
" transforms.RandomHorizontalFlip(),\n",
|
705 |
+
" transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),\n",
|
706 |
+
" transforms.ToTensor(),\n",
|
707 |
+
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
|
708 |
+
"])\n",
|
709 |
+
"\n",
|
710 |
+
"inference_transform = transforms.Compose([\n",
|
711 |
+
" transforms.Resize((224, 224)),\n",
|
712 |
+
" transforms.ToTensor(),\n",
|
713 |
+
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
|
714 |
+
"])"
|
715 |
+
],
|
716 |
+
"metadata": {
|
717 |
+
"id": "Jt8ZJtCM0MEl"
|
718 |
+
},
|
719 |
+
"execution_count": 22,
|
720 |
+
"outputs": []
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"cell_type": "markdown",
|
724 |
+
"source": [
|
725 |
+
"# Loading the Pickle and Running on Publlic Dataset"
|
726 |
+
],
|
727 |
+
"metadata": {
|
728 |
+
"id": "DMHQWN_qvOwU"
|
729 |
+
}
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"cell_type": "code",
|
733 |
+
"source": [
|
734 |
+
"!huggingface-cli login\n",
|
735 |
+
"# use appropiate token"
|
736 |
+
],
|
737 |
+
"metadata": {
|
738 |
+
"id": "hMz1QFksv-Dt"
|
739 |
+
},
|
740 |
+
"execution_count": null,
|
741 |
+
"outputs": []
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"cell_type": "code",
|
745 |
+
"source": [
|
746 |
+
"pickle_file_path = hf_hub_download(repo_id= \"CIS-5190-CIA/Ensamble\", filename=\"ensemble_model.pkl\")"
|
747 |
+
],
|
748 |
+
"metadata": {
|
749 |
+
"colab": {
|
750 |
+
"base_uri": "https://localhost:8080/",
|
751 |
+
"height": 153,
|
752 |
+
"referenced_widgets": [
|
753 |
+
"7d71deee94c64080badb10c59e3ac49b",
|
754 |
+
"013d6d22ebe04ebda019d9bf2e7e135d",
|
755 |
+
"dd04535976844f3b82bd58020d30acb7",
|
756 |
+
"a02104842c0a4b24adfc413f59d84fc0",
|
757 |
+
"94cb76a011a94602b4192f8e6e7142a4",
|
758 |
+
"80d6e5f3592f440db67765ee24e83ccc",
|
759 |
+
"9b8c527888bd4721a6a4387797fc7ba0",
|
760 |
+
"ed88c4a913d849a1a8222668aca3b1a0",
|
761 |
+
"52921704988a4cd49196eaab6a858268",
|
762 |
+
"256010fb44964c1fabc7d96d5ea4c644",
|
763 |
+
"91b2880b6eea4ba7b6a96a97c3fb8060"
|
764 |
+
]
|
765 |
+
},
|
766 |
+
"id": "U--CT_wUwKzr",
|
767 |
+
"outputId": "8b0c7205-6de6-4794-8da7-0e917874532e"
|
768 |
+
},
|
769 |
+
"execution_count": 9,
|
770 |
+
"outputs": [
|
771 |
+
{
|
772 |
+
"output_type": "stream",
|
773 |
+
"name": "stderr",
|
774 |
+
"text": [
|
775 |
+
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
|
776 |
+
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
|
777 |
+
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
|
778 |
+
"You will be able to reuse this secret in all of your notebooks.\n",
|
779 |
+
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
|
780 |
+
" warnings.warn(\n"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"output_type": "display_data",
|
785 |
+
"data": {
|
786 |
+
"text/plain": [
|
787 |
+
"ensemble_model.pkl: 0%| | 0.00/279M [00:00<?, ?B/s]"
|
788 |
+
],
|
789 |
+
"application/vnd.jupyter.widget-view+json": {
|
790 |
+
"version_major": 2,
|
791 |
+
"version_minor": 0,
|
792 |
+
"model_id": "7d71deee94c64080badb10c59e3ac49b"
|
793 |
+
}
|
794 |
+
},
|
795 |
+
"metadata": {}
|
796 |
+
}
|
797 |
+
]
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"cell_type": "code",
|
801 |
+
"source": [
|
802 |
+
"with open(pickle_file_path, \"rb\") as f:\n",
|
803 |
+
" ensemble_model = pickle.load(f)\n",
|
804 |
+
"\n",
|
805 |
+
"model1 = CNNModel1(num_outputs=2) # Adapted AlexNet\n",
|
806 |
+
"model2 = CNNModel2(num_outputs=2) # Adapted ResNet\n",
|
807 |
+
"model3 = CNNModel3(num_outputs=2) # Adapted GoogLeNet\n",
|
808 |
+
"\n",
|
809 |
+
"model1.load_state_dict(ensemble_model[\"RNNModel1\"])\n",
|
810 |
+
"model2.load_state_dict(ensemble_model[\"RNNModel2\"])\n",
|
811 |
+
"model3.load_state_dict(ensemble_model[\"RNNModel3\"])\n",
|
812 |
+
"\n",
|
813 |
+
"model1.to(device)\n",
|
814 |
+
"model2.to(device)\n",
|
815 |
+
"model3.to(device)\n",
|
816 |
+
"\n",
|
817 |
+
"model1.eval()\n",
|
818 |
+
"model2.eval()\n",
|
819 |
+
"model3.eval()"
|
820 |
+
],
|
821 |
+
"metadata": {
|
822 |
+
"colab": {
|
823 |
+
"base_uri": "https://localhost:8080/"
|
824 |
+
},
|
825 |
+
"id": "dUSraz_wweEw",
|
826 |
+
"outputId": "bca9cc95-2d6b-4172-a6e9-faeb85e9f2d4"
|
827 |
+
},
|
828 |
+
"execution_count": 30,
|
829 |
+
"outputs": [
|
830 |
+
{
|
831 |
+
"output_type": "execute_result",
|
832 |
+
"data": {
|
833 |
+
"text/plain": [
|
834 |
+
"CNNModel3(\n",
|
835 |
+
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))\n",
|
836 |
+
" (maxpool1): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
837 |
+
" (conv2): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
838 |
+
" (maxpool2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
839 |
+
" (inception3a): InceptionModule(\n",
|
840 |
+
" (branch1): Sequential(\n",
|
841 |
+
" (0): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))\n",
|
842 |
+
" (1): ReLU(inplace=True)\n",
|
843 |
+
" )\n",
|
844 |
+
" (branch2): Sequential(\n",
|
845 |
+
" (0): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))\n",
|
846 |
+
" (1): ReLU(inplace=True)\n",
|
847 |
+
" (2): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
848 |
+
" (3): ReLU(inplace=True)\n",
|
849 |
+
" )\n",
|
850 |
+
" (branch3): Sequential(\n",
|
851 |
+
" (0): Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1))\n",
|
852 |
+
" (1): ReLU(inplace=True)\n",
|
853 |
+
" (2): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
|
854 |
+
" (3): ReLU(inplace=True)\n",
|
855 |
+
" )\n",
|
856 |
+
" (branch4): Sequential(\n",
|
857 |
+
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)\n",
|
858 |
+
" (1): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))\n",
|
859 |
+
" (2): ReLU(inplace=True)\n",
|
860 |
+
" )\n",
|
861 |
+
" )\n",
|
862 |
+
" (inception3b): InceptionModule(\n",
|
863 |
+
" (branch1): Sequential(\n",
|
864 |
+
" (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))\n",
|
865 |
+
" (1): ReLU(inplace=True)\n",
|
866 |
+
" )\n",
|
867 |
+
" (branch2): Sequential(\n",
|
868 |
+
" (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))\n",
|
869 |
+
" (1): ReLU(inplace=True)\n",
|
870 |
+
" (2): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
871 |
+
" (3): ReLU(inplace=True)\n",
|
872 |
+
" )\n",
|
873 |
+
" (branch3): Sequential(\n",
|
874 |
+
" (0): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))\n",
|
875 |
+
" (1): ReLU(inplace=True)\n",
|
876 |
+
" (2): Conv2d(32, 96, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
|
877 |
+
" (3): ReLU(inplace=True)\n",
|
878 |
+
" )\n",
|
879 |
+
" (branch4): Sequential(\n",
|
880 |
+
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)\n",
|
881 |
+
" (1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))\n",
|
882 |
+
" (2): ReLU(inplace=True)\n",
|
883 |
+
" )\n",
|
884 |
+
" )\n",
|
885 |
+
" (maxpool3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
886 |
+
" (inception4a): InceptionModule(\n",
|
887 |
+
" (branch1): Sequential(\n",
|
888 |
+
" (0): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1))\n",
|
889 |
+
" (1): ReLU(inplace=True)\n",
|
890 |
+
" )\n",
|
891 |
+
" (branch2): Sequential(\n",
|
892 |
+
" (0): Conv2d(480, 96, kernel_size=(1, 1), stride=(1, 1))\n",
|
893 |
+
" (1): ReLU(inplace=True)\n",
|
894 |
+
" (2): Conv2d(96, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
895 |
+
" (3): ReLU(inplace=True)\n",
|
896 |
+
" )\n",
|
897 |
+
" (branch3): Sequential(\n",
|
898 |
+
" (0): Conv2d(480, 16, kernel_size=(1, 1), stride=(1, 1))\n",
|
899 |
+
" (1): ReLU(inplace=True)\n",
|
900 |
+
" (2): Conv2d(16, 48, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
|
901 |
+
" (3): ReLU(inplace=True)\n",
|
902 |
+
" )\n",
|
903 |
+
" (branch4): Sequential(\n",
|
904 |
+
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)\n",
|
905 |
+
" (1): Conv2d(480, 64, kernel_size=(1, 1), stride=(1, 1))\n",
|
906 |
+
" (2): ReLU(inplace=True)\n",
|
907 |
+
" )\n",
|
908 |
+
" )\n",
|
909 |
+
" (inception4b): InceptionModule(\n",
|
910 |
+
" (branch1): Sequential(\n",
|
911 |
+
" (0): Conv2d(512, 160, kernel_size=(1, 1), stride=(1, 1))\n",
|
912 |
+
" (1): ReLU(inplace=True)\n",
|
913 |
+
" )\n",
|
914 |
+
" (branch2): Sequential(\n",
|
915 |
+
" (0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))\n",
|
916 |
+
" (1): ReLU(inplace=True)\n",
|
917 |
+
" (2): Conv2d(112, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
918 |
+
" (3): ReLU(inplace=True)\n",
|
919 |
+
" )\n",
|
920 |
+
" (branch3): Sequential(\n",
|
921 |
+
" (0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))\n",
|
922 |
+
" (1): ReLU(inplace=True)\n",
|
923 |
+
" (2): Conv2d(24, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
|
924 |
+
" (3): ReLU(inplace=True)\n",
|
925 |
+
" )\n",
|
926 |
+
" (branch4): Sequential(\n",
|
927 |
+
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)\n",
|
928 |
+
" (1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))\n",
|
929 |
+
" (2): ReLU(inplace=True)\n",
|
930 |
+
" )\n",
|
931 |
+
" )\n",
|
932 |
+
" (maxpool4): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
933 |
+
" (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n",
|
934 |
+
" (dropout): Dropout(p=0.4, inplace=False)\n",
|
935 |
+
" (fc): Linear(in_features=512, out_features=2, bias=True)\n",
|
936 |
+
")"
|
937 |
+
]
|
938 |
+
},
|
939 |
+
"metadata": {},
|
940 |
+
"execution_count": 30
|
941 |
+
}
|
942 |
+
]
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"cell_type": "code",
|
946 |
+
"source": [
|
947 |
+
"def ensemble_predict(models, dataloader):\n",
|
948 |
+
" \"\"\"\n",
|
949 |
+
" Runs inference on the ensemble model.\n",
|
950 |
+
" Args:\n",
|
951 |
+
" models: List of models in the ensemble.\n",
|
952 |
+
" dataloader: DataLoader containing the input data.\n",
|
953 |
+
" Returns:\n",
|
954 |
+
" Averaged predictions from the ensemble.\n",
|
955 |
+
" \"\"\"\n",
|
956 |
+
" model_outputs = []\n",
|
957 |
+
" for model in models:\n",
|
958 |
+
" outputs = []\n",
|
959 |
+
" with torch.no_grad():\n",
|
960 |
+
" for images, _ in dataloader:\n",
|
961 |
+
" images = images.to(device)\n",
|
962 |
+
" outputs.append(model(images))\n",
|
963 |
+
" model_outputs.append(torch.cat(outputs, dim=0))\n",
|
964 |
+
"\n",
|
965 |
+
" # average the predictions across all models\n",
|
966 |
+
" ensemble_output = torch.stack(model_outputs, dim=0).mean(dim=0)\n",
|
967 |
+
" return ensemble_output"
|
968 |
+
],
|
969 |
+
"metadata": {
|
970 |
+
"id": "kOOXX1c1xr2J"
|
971 |
+
},
|
972 |
+
"execution_count": 31,
|
973 |
+
"outputs": []
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"cell_type": "code",
|
977 |
+
"source": [
|
978 |
+
"models = [model1, model2, model3]\n",
|
979 |
+
"\n",
|
980 |
+
"## UPDATE THIS WITH THE ACTUAL TESTING DATASET --> THIS IS THE ONLY VALUE YOU\n",
|
981 |
+
"## NEED TO UPDATE\n",
|
982 |
+
"\n",
|
983 |
+
"dataset_test = load_dataset(\"gydou/released_img\")"
|
984 |
+
],
|
985 |
+
"metadata": {
|
986 |
+
"id": "x2gDbdjMx5Pl"
|
987 |
+
},
|
988 |
+
"execution_count": 32,
|
989 |
+
"outputs": []
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"cell_type": "code",
|
993 |
+
"source": [
|
994 |
+
"latitudes = np.array([item['Latitude'] for item in dataset_test['train']])\n",
|
995 |
+
"longitudes = np.array([item['Longitude'] for item in dataset_test['train']])\n",
|
996 |
+
"\n",
|
997 |
+
"lat_mean = latitudes.mean()\n",
|
998 |
+
"lat_std = latitudes.std()\n",
|
999 |
+
"lon_mean = longitudes.mean()\n",
|
1000 |
+
"lon_std = longitudes.std()\n",
|
1001 |
+
"\n",
|
1002 |
+
"val_dataset = GPSImageDataset(\n",
|
1003 |
+
" hf_dataset=dataset_test['train'],\n",
|
1004 |
+
" transform=inference_transform,\n",
|
1005 |
+
" lat_mean=lat_mean,\n",
|
1006 |
+
" lat_std=lat_std,\n",
|
1007 |
+
" lon_mean=lon_mean,\n",
|
1008 |
+
" lon_std=lon_std\n",
|
1009 |
+
")\n",
|
1010 |
+
"\n",
|
1011 |
+
"val_dataloader = DataLoader(\n",
|
1012 |
+
" val_dataset,\n",
|
1013 |
+
" batch_size=32,\n",
|
1014 |
+
" shuffle=False,\n",
|
1015 |
+
" num_workers=4\n",
|
1016 |
+
")\n",
|
1017 |
+
"\n",
|
1018 |
+
"predictions = ensemble_predict(models, dataloader = val_dataloader)"
|
1019 |
+
],
|
1020 |
+
"metadata": {
|
1021 |
+
"id": "Q8rQ-jCHzceg"
|
1022 |
+
},
|
1023 |
+
"execution_count": 33,
|
1024 |
+
"outputs": []
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"cell_type": "code",
|
1028 |
+
"source": [
|
1029 |
+
"from geopy.distance import geodesic\n",
|
1030 |
+
"def compute_rmse_in_meters(predictions, dataloader, lat_mean, lon_mean, lat_std, lon_std):\n",
|
1031 |
+
" total_loss = 0.0\n",
|
1032 |
+
" total_samples = 0\n",
|
1033 |
+
"\n",
|
1034 |
+
" predictions_denorm = predictions.cpu().numpy() * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])\n",
|
1035 |
+
" for idx, (_, gps_coords) in enumerate(dataloader):\n",
|
1036 |
+
" gps_coords = gps_coords.cpu().numpy()\n",
|
1037 |
+
"\n",
|
1038 |
+
"\n",
|
1039 |
+
" actuals_denorm = gps_coords * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])\n",
|
1040 |
+
" batch_preds = predictions_denorm[idx * len(gps_coords):(idx + 1) * len(gps_coords)]\n",
|
1041 |
+
" for pred, actual in zip(batch_preds, actuals_denorm):\n",
|
1042 |
+
" distance = geodesic((actual[0], actual[1]), (pred[0], pred[1])).meters\n",
|
1043 |
+
" total_loss += distance ** 2\n",
|
1044 |
+
"\n",
|
1045 |
+
" total_samples += len(gps_coords)\n",
|
1046 |
+
"\n",
|
1047 |
+
" rmse = np.sqrt(total_loss / total_samples)\n",
|
1048 |
+
" return rmse\n",
|
1049 |
+
"\n",
|
1050 |
+
"rmse = compute_rmse_in_meters(predictions, val_dataloader, lat_mean, lon_mean, lat_std, lon_std)\n",
|
1051 |
+
"\n",
|
1052 |
+
"print(f\"Root Mean Squared Error (meters): {rmse:.2f}\")"
|
1053 |
+
],
|
1054 |
+
"metadata": {
|
1055 |
+
"colab": {
|
1056 |
+
"base_uri": "https://localhost:8080/"
|
1057 |
+
},
|
1058 |
+
"id": "_jyPRsLi2mZ3",
|
1059 |
+
"outputId": "f71f0c8d-5de6-4bc5-82b6-53cc97ce6bee"
|
1060 |
+
},
|
1061 |
+
"execution_count": 36,
|
1062 |
+
"outputs": [
|
1063 |
+
{
|
1064 |
+
"output_type": "stream",
|
1065 |
+
"name": "stdout",
|
1066 |
+
"text": [
|
1067 |
+
"Root Mean Squared Error (meters): 102.03\n"
|
1068 |
+
]
|
1069 |
+
}
|
1070 |
+
]
|
1071 |
+
}
|
1072 |
+
]
|
1073 |
+
}
|