File size: 987 Bytes
54c3ddb 1c8b91f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
---
library_name: transformers
tags: []
---
```
import pandas as pd
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from safetensors.torch import load_file
def evaluate(test_data):
tokenizer = BertTokenizer.from_pretrained("CIS5190-PROJ/BERTv3")
model = BertForSequenceClassification.from_pretrained("CIS5190-PROJ/BERTv3")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
test_texts = test_data['title'].tolist()
test_encodings = tokenizer(test_texts, truncation=True, padding="max_length", max_length=64)
test_encodings = {key: torch.tensor(val).to(device) for key, val in test_encodings.items()}
with torch.no_grad():
outputs = model(**test_encodings)
logits = outputs.logits
predictions = torch.argmax(logits, dim=1).cpu().numpy()
return 1- predictions
``` |