--- library_name: transformers tags: [] --- ``` import pandas as pd import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from transformers import BertTokenizer, BertForSequenceClassification import torch from safetensors.torch import load_file def evaluate(test_data): tokenizer = BertTokenizer.from_pretrained("CIS5190-PROJ/BERTv3") model = BertForSequenceClassification.from_pretrained("CIS5190-PROJ/BERTv3") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() test_texts = test_data['title'].tolist() test_encodings = tokenizer(test_texts, truncation=True, padding="max_length", max_length=64) test_encodings = {key: torch.tensor(val).to(device) for key, val in test_encodings.items()} with torch.no_grad(): outputs = model(**test_encodings) logits = outputs.logits predictions = torch.argmax(logits, dim=1).cpu().numpy() return 1- predictions ```