Update README.md
Browse files
README.md
CHANGED
@@ -7,10 +7,7 @@ The following code load and test the models on colab notebook.
|
|
7 |
|
8 |
## Prerequisites
|
9 |
|
10 |
-
1.
|
11 |
-
```bash
|
12 |
-
pip install torch transformers pandas scikit-learn huggingface_hub
|
13 |
-
|
14 |
|
15 |
```python
|
16 |
from huggingface_hub import login
|
@@ -19,23 +16,22 @@ import torch.nn as nn
|
|
19 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
20 |
from torch.utils.data import Dataset, DataLoader
|
21 |
import pandas as pd
|
|
|
|
|
22 |
from sklearn.metrics import accuracy_score
|
23 |
-
from huggingface_hub import login
|
24 |
from transformers import AutoModel, AutoTokenizer
|
25 |
-
import pandas as pd
|
26 |
-
|
27 |
from huggingface_hub import login
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
import pandas as pd
|
34 |
-
import numpy as np
|
35 |
-
from sklearn.metrics import accuracy_score
|
36 |
-
import re
|
37 |
|
38 |
# Define the preprocessing and dataset class
|
|
|
|
|
|
|
39 |
class NewsDataset(Dataset):
|
40 |
def __init__(self, texts, labels, tokenizer, max_len=128):
|
41 |
self.texts = texts
|
|
|
7 |
|
8 |
## Prerequisites
|
9 |
|
10 |
+
1. Import the required Python packages:
|
|
|
|
|
|
|
11 |
|
12 |
```python
|
13 |
from huggingface_hub import login
|
|
|
16 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
17 |
from torch.utils.data import Dataset, DataLoader
|
18 |
import pandas as pd
|
19 |
+
import numpy as np
|
20 |
+
import re
|
21 |
from sklearn.metrics import accuracy_score
|
|
|
22 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
|
23 |
from huggingface_hub import login
|
24 |
+
```
|
25 |
+
2. Log in by using the account (see our Ed private post & email sent to TAs, thanks!):
|
26 |
|
27 |
+
```python
|
28 |
+
login("Replace with the key")
|
29 |
+
```
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Define the preprocessing and dataset class
|
32 |
+
|
33 |
+
1. Run the following preprocessing code
|
34 |
+
|
35 |
class NewsDataset(Dataset):
|
36 |
def __init__(self, texts, labels, tokenizer, max_len=128):
|
37 |
self.texts = texts
|