Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,113 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
```python
|
2 |
+
from huggingface_hub import login
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
+
from torch.utils.data import Dataset, DataLoader
|
7 |
+
import pandas as pd
|
8 |
+
from sklearn.metrics import accuracy_score
|
9 |
+
from huggingface_hub import login
|
10 |
+
from transformers import AutoModel, AutoTokenizer
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
from huggingface_hub import login
|
14 |
+
login("Replace with the key")
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from torch.utils.data import Dataset, DataLoader
|
18 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
19 |
+
import pandas as pd
|
20 |
+
import numpy as np
|
21 |
+
from sklearn.metrics import accuracy_score
|
22 |
+
import re
|
23 |
+
|
24 |
+
# Define the preprocessing and dataset class
|
25 |
+
class NewsDataset(Dataset):
|
26 |
+
def __init__(self, texts, labels, tokenizer, max_len=128):
|
27 |
+
self.texts = texts
|
28 |
+
self.labels = labels
|
29 |
+
self.tokenizer = tokenizer
|
30 |
+
self.max_len = max_len
|
31 |
+
|
32 |
+
def __len__(self):
|
33 |
+
return len(self.texts)
|
34 |
+
|
35 |
+
def __getitem__(self, idx):
|
36 |
+
text = self.texts[idx]
|
37 |
+
label = self.labels[idx]
|
38 |
+
encoding = self.tokenizer(
|
39 |
+
text,
|
40 |
+
max_length=self.max_len,
|
41 |
+
padding="max_length",
|
42 |
+
truncation=True,
|
43 |
+
return_tensors="pt"
|
44 |
+
)
|
45 |
+
return {
|
46 |
+
"input_ids": encoding["input_ids"].squeeze(),
|
47 |
+
"attention_mask": encoding["attention_mask"].squeeze(),
|
48 |
+
"labels": torch.tensor(label, dtype=torch.long)
|
49 |
+
}
|
50 |
+
|
51 |
+
def preprocess_text(text):
|
52 |
+
"""Clean and preprocess text."""
|
53 |
+
text = str(text)
|
54 |
+
contractions = {
|
55 |
+
"n't": " not",
|
56 |
+
"'s": " is",
|
57 |
+
"'ll": " will",
|
58 |
+
"'ve": " have"
|
59 |
+
}
|
60 |
+
for contraction, expansion in contractions.items():
|
61 |
+
text = text.replace(contraction, expansion)
|
62 |
+
text = re.sub(r'\$\\d+\.?\\d*\s*(million|billion|trillion)?', r'$ \1', text, flags=re.IGNORECASE)
|
63 |
+
text = re.sub(r'http\\S+', '', text)
|
64 |
+
text = re.sub(r'-', ' ', text)
|
65 |
+
text = text.lower()
|
66 |
+
text = ' '.join(text.split())
|
67 |
+
return text
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
# Step 1: Load the model and tokenizer from Hugging Face Hub
|
72 |
+
print("Loading model and tokenizer...")
|
73 |
+
REPO_NAME = "CIS5190GoGo/CustomModel" # Replace with your repo name on Hugging Face Hub
|
74 |
+
model = RobertaForSequenceClassification.from_pretrained(REPO_NAME)
|
75 |
+
tokenizer = RobertaTokenizer.from_pretrained(REPO_NAME)
|
76 |
+
|
77 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
78 |
+
model.to(device)
|
79 |
+
print("Model and tokenizer loaded successfully!")
|
80 |
+
|
81 |
+
# Step 2: Load test dataset
|
82 |
+
print("Loading test data...")
|
83 |
+
test_data_path = "/content/drive/MyDrive/5190_project/test_data_random_subset.csv" # Replace with your test set path
|
84 |
+
test_data = pd.read_csv(test_data_path)
|
85 |
+
|
86 |
+
# Preprocess test data
|
87 |
+
X_test = test_data['title'].apply(preprocess_text).values
|
88 |
+
y_test = test_data['labels'].values
|
89 |
+
|
90 |
+
# Step 3: Prepare the dataset and dataloader
|
91 |
+
test_dataset = NewsDataset(X_test, y_test, tokenizer)
|
92 |
+
test_loader = DataLoader(test_dataset, batch_size=16, num_workers=2)
|
93 |
+
|
94 |
+
# Step 4: Evaluate the model
|
95 |
+
print("Evaluating the model...")
|
96 |
+
model.eval()
|
97 |
+
all_preds, all_labels = [], []
|
98 |
+
|
99 |
+
with torch.no_grad():
|
100 |
+
for batch in test_loader:
|
101 |
+
input_ids = batch["input_ids"].to(device)
|
102 |
+
attention_mask = batch["attention_mask"].to(device)
|
103 |
+
labels = batch["labels"].to(device)
|
104 |
+
|
105 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
106 |
+
preds = torch.argmax(outputs.logits, dim=-1)
|
107 |
+
|
108 |
+
all_preds.extend(preds.cpu().numpy())
|
109 |
+
all_labels.extend(labels.cpu().numpy())
|
110 |
+
|
111 |
+
# Step 5: Calculate accuracy
|
112 |
+
accuracy = accuracy_score(all_labels, all_preds)
|
113 |
+
print(f"Test Accuracy: {accuracy:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|