Jiayi05 commited on
Commit
94b758b
·
verified ·
1 Parent(s): d5d4e73

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -199
README.md CHANGED
@@ -1,199 +1,113 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ```python
2
+ from huggingface_hub import login
3
+ import torch
4
+ import torch.nn as nn
5
+ from transformers import RobertaForSequenceClassification, RobertaTokenizer
6
+ from torch.utils.data import Dataset, DataLoader
7
+ import pandas as pd
8
+ from sklearn.metrics import accuracy_score
9
+ from huggingface_hub import login
10
+ from transformers import AutoModel, AutoTokenizer
11
+ import pandas as pd
12
+
13
+ from huggingface_hub import login
14
+ login("Replace with the key")
15
+
16
+ import torch
17
+ from torch.utils.data import Dataset, DataLoader
18
+ from transformers import RobertaTokenizer, RobertaForSequenceClassification
19
+ import pandas as pd
20
+ import numpy as np
21
+ from sklearn.metrics import accuracy_score
22
+ import re
23
+
24
+ # Define the preprocessing and dataset class
25
+ class NewsDataset(Dataset):
26
+ def __init__(self, texts, labels, tokenizer, max_len=128):
27
+ self.texts = texts
28
+ self.labels = labels
29
+ self.tokenizer = tokenizer
30
+ self.max_len = max_len
31
+
32
+ def __len__(self):
33
+ return len(self.texts)
34
+
35
+ def __getitem__(self, idx):
36
+ text = self.texts[idx]
37
+ label = self.labels[idx]
38
+ encoding = self.tokenizer(
39
+ text,
40
+ max_length=self.max_len,
41
+ padding="max_length",
42
+ truncation=True,
43
+ return_tensors="pt"
44
+ )
45
+ return {
46
+ "input_ids": encoding["input_ids"].squeeze(),
47
+ "attention_mask": encoding["attention_mask"].squeeze(),
48
+ "labels": torch.tensor(label, dtype=torch.long)
49
+ }
50
+
51
+ def preprocess_text(text):
52
+ """Clean and preprocess text."""
53
+ text = str(text)
54
+ contractions = {
55
+ "n't": " not",
56
+ "'s": " is",
57
+ "'ll": " will",
58
+ "'ve": " have"
59
+ }
60
+ for contraction, expansion in contractions.items():
61
+ text = text.replace(contraction, expansion)
62
+ text = re.sub(r'\$\\d+\.?\\d*\s*(million|billion|trillion)?', r'$ \1', text, flags=re.IGNORECASE)
63
+ text = re.sub(r'http\\S+', '', text)
64
+ text = re.sub(r'-', ' ', text)
65
+ text = text.lower()
66
+ text = ' '.join(text.split())
67
+ return text
68
+
69
+
70
+
71
+ # Step 1: Load the model and tokenizer from Hugging Face Hub
72
+ print("Loading model and tokenizer...")
73
+ REPO_NAME = "CIS5190GoGo/CustomModel" # Replace with your repo name on Hugging Face Hub
74
+ model = RobertaForSequenceClassification.from_pretrained(REPO_NAME)
75
+ tokenizer = RobertaTokenizer.from_pretrained(REPO_NAME)
76
+
77
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
78
+ model.to(device)
79
+ print("Model and tokenizer loaded successfully!")
80
+
81
+ # Step 2: Load test dataset
82
+ print("Loading test data...")
83
+ test_data_path = "/content/drive/MyDrive/5190_project/test_data_random_subset.csv" # Replace with your test set path
84
+ test_data = pd.read_csv(test_data_path)
85
+
86
+ # Preprocess test data
87
+ X_test = test_data['title'].apply(preprocess_text).values
88
+ y_test = test_data['labels'].values
89
+
90
+ # Step 3: Prepare the dataset and dataloader
91
+ test_dataset = NewsDataset(X_test, y_test, tokenizer)
92
+ test_loader = DataLoader(test_dataset, batch_size=16, num_workers=2)
93
+
94
+ # Step 4: Evaluate the model
95
+ print("Evaluating the model...")
96
+ model.eval()
97
+ all_preds, all_labels = [], []
98
+
99
+ with torch.no_grad():
100
+ for batch in test_loader:
101
+ input_ids = batch["input_ids"].to(device)
102
+ attention_mask = batch["attention_mask"].to(device)
103
+ labels = batch["labels"].to(device)
104
+
105
+ outputs = model(input_ids=input_ids, attention_mask=attention_mask)
106
+ preds = torch.argmax(outputs.logits, dim=-1)
107
+
108
+ all_preds.extend(preds.cpu().numpy())
109
+ all_labels.extend(labels.cpu().numpy())
110
+
111
+ # Step 5: Calculate accuracy
112
+ accuracy = accuracy_score(all_labels, all_preds)
113
+ print(f"Test Accuracy: {accuracy:.4f}")