yitingliii
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,36 +1,35 @@
|
|
1 |
# SVM Model with TF-IDF
|
2 |
Step by step instruction:
|
3 |
-
|
4 |
-
<br>Before running the code,
|
5 |
|
6 |
```python
|
7 |
pip install nltk beautifulsoup4 scikit-learn pandas
|
8 |
```
|
9 |
-
<br> Download necessary
|
10 |
```python
|
11 |
import nltk
|
12 |
nltk.download('stopwords')
|
13 |
nltk.download('wordnet')
|
14 |
|
15 |
-
from nltk.corpus import stopwords
|
16 |
-
from nltk.stem import WordNetLemmatizer
|
17 |
-
from bs4 import BeautifulSoup
|
18 |
-
import re
|
19 |
-
import pandas as pd
|
20 |
-
from sklearn.svm import SVC
|
21 |
```
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
2.
|
24 |
-
<br>
|
25 |
-
-
|
26 |
-
|
27 |
-
- Converting text to lowercase.
|
28 |
-
- Removing stopwords using NLTK.
|
29 |
-
- Lemmatizing words using WordNetLemmatizer.
|
30 |
|
|
|
|
|
31 |
|
32 |
```python
|
33 |
from data_cleaning import clean
|
|
|
34 |
|
35 |
# Load your data
|
36 |
df = pd.read_csv('test_data_random_subset.csv')
|
@@ -40,13 +39,5 @@ cleaned_df = clean(df)
|
|
40 |
|
41 |
```
|
42 |
|
43 |
-
3
|
44 |
-
```python
|
45 |
-
svm_model = SVC(kernel='linear', random_state=42)
|
46 |
-
svm_model.fit(X_train_tfidf, y_train)
|
47 |
-
y_pred = svm_model.predict(X_test_tfidf)
|
48 |
-
accuracy = accuracy_score(y_test, y_pred)
|
49 |
-
print(f"Random Forest Accuracy: {accuracy:.4f}")
|
50 |
-
print(classification_report(y_test, y_pred))
|
51 |
-
```
|
52 |
|
|
|
1 |
# SVM Model with TF-IDF
|
2 |
Step by step instruction:
|
3 |
+
## Installation
|
4 |
+
<br>Before running the code, ensure you have all the required libraries installed:
|
5 |
|
6 |
```python
|
7 |
pip install nltk beautifulsoup4 scikit-learn pandas
|
8 |
```
|
9 |
+
<br> Download necessary NTLK resources for preprocessing.
|
10 |
```python
|
11 |
import nltk
|
12 |
nltk.download('stopwords')
|
13 |
nltk.download('wordnet')
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
```
|
16 |
+
# How to Use:
|
17 |
+
1. Pre-Trained Model and Vectorizer
|
18 |
+
<br> The repository includes:
|
19 |
+
- model.pkl : The pre-trained SVM model
|
20 |
+
- tfidf.pkl: The saved TF-IDF vectorizer used to transform the text data.
|
21 |
|
22 |
+
2. Testing a new dataset
|
23 |
+
<br> To test the model with the new dataset, follow these steps:
|
24 |
+
- Step 1: Prepare the dataset:
|
25 |
+
<br> Ensure the dataset is in CVS format and has three columns: title, outlet and labels. title column containing the text data to be classified.
|
|
|
|
|
|
|
26 |
|
27 |
+
- Step 2: Preprocess the Data
|
28 |
+
<br>Use the clean() function from data_cleaning.py to preprocess the text data:
|
29 |
|
30 |
```python
|
31 |
from data_cleaning import clean
|
32 |
+
import pandas as pd
|
33 |
|
34 |
# Load your data
|
35 |
df = pd.read_csv('test_data_random_subset.csv')
|
|
|
39 |
|
40 |
```
|
41 |
|
42 |
+
- Step 3: Load the pre-trained model and TF-IDF Vectorizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|