yitingliii
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,27 @@
|
|
1 |
# SVM Model with TF-IDF
|
2 |
-
This repository provides a pre-trained Support Vector Machine (SVM) model for text classification using Term Frequency-Inverse Document Frequency (TF-IDF). The repository also includes utilities for data preprocessing and feature extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
## Installation
|
4 |
<br>Before running the code, ensure you have all the required libraries installed:
|
5 |
|
@@ -7,72 +29,31 @@ This repository provides a pre-trained Support Vector Machine (SVM) model for te
|
|
7 |
pip install nltk beautifulsoup4 scikit-learn pandas datasets
|
8 |
```
|
9 |
<br> Download necessary NTLK resources for preprocessing.
|
10 |
-
```python
|
11 |
-
import nltk
|
12 |
-
nltk.download('stopwords')
|
13 |
-
nltk.download('wordnet')
|
14 |
-
|
15 |
```
|
16 |
-
|
17 |
-
1. Data Cleaning
|
18 |
-
<br> The data_cleaning.py file contains a clean() function to preprocess the input dataset:
|
19 |
-
- Removes HTML tags.
|
20 |
-
- Removes non-alphanumeric characters and extra spaces.
|
21 |
-
- Converts text to lowercase.
|
22 |
-
- Removes stopwords.
|
23 |
-
- Lemmatizes words.
|
24 |
-
|
25 |
-
```python
|
26 |
-
from data_cleaning import clean
|
27 |
-
import pandas as pd
|
28 |
import nltk
|
29 |
nltk.download('stopwords')
|
30 |
-
|
31 |
-
|
32 |
-
# Load your data
|
33 |
-
df = pd.read_csv("hf://datasets/CIS5190abcd/headlines_test/test_cleaned_headlines.csv")
|
34 |
-
|
35 |
-
# Clean the data
|
36 |
-
cleaned_df = clean(df)
|
37 |
-
|
38 |
```
|
39 |
-
|
40 |
-
2. TF-IDF Feature Extraction
|
41 |
-
<br> The tfidf.py file contains the TF-IDF vectorization logic. It converts cleaned text data into numerical features suitable for training and testing the SVM model.
|
42 |
-
```python
|
43 |
-
from tfidf import tfidf
|
44 |
-
|
45 |
-
# Apply TF-IDF vectorization
|
46 |
-
X_train_tfidf = tfidf.fit_transform(X_train['title'])
|
47 |
-
X_test_tfidf = tfidf.transform(X_test['title'])
|
48 |
```
|
49 |
-
|
50 |
-
<br> The svm.py file contains the logic for training and testing the SVM model. It uses the TF-IDF-transformed features to classify text data.
|
51 |
-
```python
|
52 |
-
from sklearn.svm import SVC
|
53 |
-
from sklearn.metrics import accuracy_score, classification_report
|
54 |
-
|
55 |
-
# Train the SVM model
|
56 |
-
svm_model = SVC(kernel='linear', random_state=42)
|
57 |
-
svm_model.fit(X_train_tfidf, y_train)
|
58 |
-
|
59 |
-
# Predict and evaluate
|
60 |
-
y_pred = svm_model.predict(X_test_tfidf)
|
61 |
-
accuracy = accuracy_score(y_test, y_pred)
|
62 |
-
print(f"SVM Accuracy: {accuracy:.4f}")
|
63 |
-
print(classification_report(y_test, y_pred))
|
64 |
```
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
- Clean the Dataset
|
70 |
```python
|
71 |
from data_cleaning import clean
|
72 |
import pandas as pd
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Clean the data
|
78 |
cleaned_df = clean(df)
|
@@ -97,3 +78,5 @@ predictions = svm_model.predict(X_new_tfidf)
|
|
97 |
|
98 |
```
|
99 |
|
|
|
|
|
|
1 |
# SVM Model with TF-IDF
|
2 |
+
This repository provides a pre-trained Support Vector Machine (SVM) model for text classification using Term Frequency-Inverse Document Frequency (TF-IDF). The repository also includes utilities for data preprocessing and feature extraction:
|
3 |
+
|
4 |
+
## Start:
|
5 |
+
<br>Open your terminal.
|
6 |
+
<br> Clone the repo by using the following command:
|
7 |
+
```
|
8 |
+
git clone https://huggingface.co/CIS5190abcd/svm
|
9 |
+
```
|
10 |
+
<br> Go to the svm directory using following command:
|
11 |
+
```
|
12 |
+
cd svm
|
13 |
+
```
|
14 |
+
<br> Run ```ls``` to check the files inside svm folder. Make sure ```tfidf.py```, ```svm.py``` and ```data_cleaning.py``` are existing in this directory. If not, run the folloing commands:
|
15 |
+
```
|
16 |
+
git checkout origin/main -- tfidf.py
|
17 |
+
git checkout origin/main -- svm.py
|
18 |
+
git checkout origin/main -- data_cleaning.py
|
19 |
+
```
|
20 |
+
<br> Rerun ```ls```, double check all the required files are existing. Should look like this:
|
21 |
+
|
22 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6755cffd784ff7ea9db10bd4/O9K5zYm7TKiIg9cYZpV1x.png)
|
23 |
+
<br> keep inside the svm directory until ends.
|
24 |
+
|
25 |
## Installation
|
26 |
<br>Before running the code, ensure you have all the required libraries installed:
|
27 |
|
|
|
29 |
pip install nltk beautifulsoup4 scikit-learn pandas datasets
|
30 |
```
|
31 |
<br> Download necessary NTLK resources for preprocessing.
|
|
|
|
|
|
|
|
|
|
|
32 |
```
|
33 |
+
python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
import nltk
|
35 |
nltk.download('stopwords')
|
36 |
+
nltk.download('wordnet')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
38 |
+
<br> After downloading all the required packages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
```
|
40 |
+
exit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
```
|
42 |
|
43 |
+
## How to use:
|
44 |
+
Training a new dataset with existing SVM model, follow the steps below:
|
45 |
|
46 |
- Clean the Dataset
|
47 |
```python
|
48 |
from data_cleaning import clean
|
49 |
import pandas as pd
|
50 |
+
import nltk
|
51 |
+
nltk.download('stopwords')
|
52 |
+
```
|
53 |
+
<br> You can replace with any datasets you want by changing the file name inside ```pd.read_csv()```.
|
54 |
+
```
|
55 |
+
# Load your data
|
56 |
+
df = pd.read_csv("hf://datasets/CIS5190abcd/headlines_test/test_cleaned_headlines.csv")
|
57 |
|
58 |
# Clean the data
|
59 |
cleaned_df = clean(df)
|
|
|
78 |
|
79 |
```
|
80 |
|
81 |
+
|
82 |
+
|