Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
base_model:
|
7 |
+
- google-bert/bert-base-uncased
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# PLEASE CHECK ED FOR TOKEN
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# Model Evaluation Guide
|
20 |
+
|
21 |
+
This document provides the necessary instructions to evaluate a pre-trained sequence classification model using a test dataset.
|
22 |
+
|
23 |
+
## Prerequisites
|
24 |
+
|
25 |
+
Before running the evaluation pipeline, ensure you have the following installed:
|
26 |
+
|
27 |
+
- Python 3.7+
|
28 |
+
- Required Python libraries
|
29 |
+
Install them by running:
|
30 |
+
|
31 |
+
```bash
|
32 |
+
pip install transformers datasets evaluate torch
|
33 |
+
```
|
34 |
+
|
35 |
+
## Dataset Information
|
36 |
+
|
37 |
+
The test dataset is hosted on the Hugging Face Hub under the namespace `CIS5190ml/Dataset`. The dataset should have the following structure:
|
38 |
+
- Column: `title`
|
39 |
+
- Column: `label`
|
40 |
+
|
41 |
+
Example entries:
|
42 |
+
- "Jack Carr's take on the late Tom Clancy..." (label: 0)
|
43 |
+
- "Feeding America CEO asks community to help..." (label: 0)
|
44 |
+
- "Trump's campaign rival decides between..." (label: 0)
|
45 |
+
|
46 |
+
## Model Information
|
47 |
+
|
48 |
+
The model being evaluated is hosted under the Hugging Face Hub namespace `CIS5190ml/bert3`.
|
49 |
+
|
50 |
+
## Evaluation Pipeline
|
51 |
+
|
52 |
+
The complete evaluation pipeline is provided in the file:
|
53 |
+
**Evaluation_Pipeline.ipynb**
|
54 |
+
|
55 |
+
This Jupyter Notebook walks you through the following steps:
|
56 |
+
1. Loading the pre-trained model and tokenizer
|
57 |
+
2. Loading and preprocessing the test dataset
|
58 |
+
3. Running predictions on the test data
|
59 |
+
4. Computing the evaluation metric (e.g., accuracy)
|
60 |
+
|
61 |
+
## Quick Start
|
62 |
+
|
63 |
+
Clone this repository and navigate to the directory:
|
64 |
+
|
65 |
+
```bash
|
66 |
+
git clone <repository-url>
|
67 |
+
cd <repository-directory>
|
68 |
+
```
|
69 |
+
|
70 |
+
Open the Jupyter Notebook:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
jupyter notebook Evaluation_Pipeline.ipynb
|
74 |
+
```
|
75 |
+
|
76 |
+
Follow the step-by-step instructions in the notebook to evaluate the model.
|
77 |
+
|
78 |
+
## Code Example
|
79 |
+
|
80 |
+
Here is an overview of the evaluation pipeline used in the notebook:
|
81 |
+
|
82 |
+
```python
|
83 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
84 |
+
from datasets import load_dataset
|
85 |
+
import evaluate
|
86 |
+
import torch
|
87 |
+
from torch.utils.data import DataLoader
|
88 |
+
|
89 |
+
# Load model and tokenizer
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained("CIS5190ml/bert3")
|
91 |
+
model = AutoModelForSequenceClassification.from_pretrained("CIS5190ml/bert3")
|
92 |
+
|
93 |
+
# Load dataset
|
94 |
+
ds = load_dataset("CIS5190ml/test_20_rows", split="train")
|
95 |
+
|
96 |
+
# Preprocessing
|
97 |
+
def preprocess_function(examples):
|
98 |
+
return tokenizer(examples["title"], truncation=True, padding="max_length")
|
99 |
+
|
100 |
+
encoded_ds = ds.map(preprocess_function, batched=True)
|
101 |
+
encoded_ds = encoded_ds.remove_columns([col for col in encoded_ds.column_names if col not in ["input_ids", "attention_mask", "label"]])
|
102 |
+
encoded_ds.set_format("torch")
|
103 |
+
|
104 |
+
# Create DataLoader
|
105 |
+
test_loader = DataLoader(encoded_ds, batch_size=8)
|
106 |
+
|
107 |
+
# Evaluate
|
108 |
+
accuracy = evaluate.load("accuracy")
|
109 |
+
model.eval()
|
110 |
+
|
111 |
+
for batch in test_loader:
|
112 |
+
with torch.no_grad():
|
113 |
+
outputs = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])
|
114 |
+
preds = torch.argmax(outputs.logits, dim=-1)
|
115 |
+
accuracy.add_batch(predictions=preds, references=batch["label"])
|
116 |
+
|
117 |
+
final_accuracy = accuracy.compute()
|
118 |
+
print("Accuracy:", final_accuracy["accuracy"])
|
119 |
+
```
|
120 |
+
|
121 |
+
## Output
|
122 |
+
|
123 |
+
After running the pipeline, the evaluation metric (e.g., accuracy) will be displayed in the notebook output. Example:
|
124 |
+
|
125 |
+
```
|
126 |
+
Accuracy: 0.85
|
127 |
+
```
|
128 |
+
|
129 |
+
## Notes
|
130 |
+
|
131 |
+
* If your dataset or column names differ, update the relevant sections in the notebook.
|
132 |
+
* To use a different evaluation metric, modify the `evaluate.load()` function in the notebook.
|
133 |
+
* For any issues or questions, please feel free to reach out.
|