File size: 21,456 Bytes
73b504f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
{
"cells": [
{
"cell_type": "code",
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2024-12-06T19:54:24.990141Z",
"start_time": "2024-12-06T19:53:17.183491Z"
}
},
"source": [
"!pip install geopy > delete.txt\n",
"!pip install datasets > delete.txt\n",
"!pip install torch torchvision datasets > delete.txt\n",
"!pip install huggingface_hub > delete.txt\n",
"!pip install pyhocon > delete.txt\n",
"!pip install transformers > delete.txt\n",
"!rm delete.txt"
],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"'rm' is not recognized as an internal or external command,\n",
"operable program or batch file.\n"
]
}
],
"execution_count": 2
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-12-06T19:56:26.136466Z",
"start_time": "2024-12-06T19:54:38.679955Z"
}
},
"cell_type": "code",
"source": "!huggingface-cli login",
"id": "b0a77c981c32a0c8",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"^C\n"
]
}
],
"execution_count": 3
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-12-06T19:57:30.983629Z",
"start_time": "2024-12-06T19:57:29.451887Z"
}
},
"cell_type": "code",
"source": [
"from datasets import load_dataset\n",
"\n",
"dataset_train = load_dataset(\"CISProject/FOX_NBC\", split=\"train\")\n",
"dataset_test = load_dataset(\"path/to/test\", split=\"test\")"
],
"id": "a4aa3b759defc904",
"outputs": [],
"execution_count": 5
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-12-06T19:58:41.568459Z",
"start_time": "2024-12-06T19:58:41.445848Z"
}
},
"cell_type": "code",
"source": [
"import numpy as np\n",
"import torch\n",
"from transformers import BertTokenizer\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"\n",
"def positional_encoding(seq_len, d_model):\n",
" pos_enc = np.zeros((seq_len, d_model))\n",
" for pos in range(seq_len):\n",
" for i in range(0, d_model, 2):\n",
" pos_enc[pos, i] = np.sin(pos / (10000 ** ((2 * i) / d_model)))\n",
" if i + 1 < d_model:\n",
" pos_enc[pos, i + 1] = np.cos(pos / (10000 ** ((2 * (i + 1)) / d_model)))\n",
" return torch.tensor(pos_enc, dtype=torch.float)\n",
"\n",
"def preprocess_data(data, mode=\"train\", tfidf_vectorizer=None, max_tfidf_features=4096, max_seq_length=128, num_proc=4):\n",
" tokenizer = BertTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"\n",
" # Initialize TF-IDF vectorizer if not provided\n",
" if tfidf_vectorizer is None and mode == \"train\":\n",
" tfidf_vectorizer = TfidfVectorizer(max_features=max_tfidf_features)\n",
"\n",
" # Fit TF-IDF only in train mode\n",
" if mode == \"train\":\n",
" tfidf_vectorizer.fit(data[\"title\"])\n",
" print(\"TF-IDF vectorizer fitted on training data.\")\n",
"\n",
" def process_batch(batch):\n",
" headlines = batch[\"title\"]\n",
" agencies = batch[\"news\"]\n",
"\n",
" # TF-IDF transformation (batch-wise)\n",
" if mode == \"train\" or tfidf_vectorizer is not None:\n",
" freq_inputs = tfidf_vectorizer.transform(headlines).toarray()\n",
" else:\n",
" raise ValueError(\"TF-IDF vectorizer must be provided in test mode.\")\n",
"\n",
" # Tokenization (batch-wise)\n",
" tokenized = tokenizer(\n",
" headlines,\n",
" padding=\"max_length\",\n",
" truncation=True,\n",
" max_length=max_seq_length,\n",
" return_tensors=\"pt\"\n",
" )\n",
"\n",
" # Stack input_ids and attention_mask along a new dimension\n",
" input_ids = tokenized[\"input_ids\"]\n",
" attention_mask = tokenized[\"attention_mask\"]\n",
"\n",
" # Ensure consistent stacking: (batch_size, 2, seq_len)\n",
" seq_inputs = torch.stack([input_ids, attention_mask], dim=1)\n",
"\n",
" # Positional encoding\n",
" pos_inputs = positional_encoding(max_seq_length, 512).unsqueeze(0).expand(len(headlines), -1, -1)\n",
"\n",
" # Labels\n",
" labels = [1.0 if agency == \"fox\" else 0.0 for agency in agencies]\n",
"\n",
" return {\n",
" \"freq_inputs\": torch.tensor(freq_inputs),\n",
" \"seq_inputs\": seq_inputs,\n",
" \"pos_inputs\": pos_inputs,\n",
" \"labels\": torch.tensor(labels),\n",
" }\n",
"\n",
" # Use `map` with batching and parallelism\n",
" processed_data = data.map(\n",
" process_batch,\n",
" batched=True,\n",
" batch_size=32,\n",
" num_proc=num_proc\n",
" )\n",
"\n",
" return processed_data, tfidf_vectorizer"
],
"id": "ce6e6b982e22e9fe",
"outputs": [
{
"ename": "ValueError",
"evalue": "numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject",
"output_type": "error",
"traceback": [
"\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[1;31mValueError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[1;32mIn[12], line 4\u001B[0m\n\u001B[0;32m 2\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mtorch\u001B[39;00m\n\u001B[0;32m 3\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mtransformers\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m BertTokenizer\n\u001B[1;32m----> 4\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01msklearn\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mfeature_extraction\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mtext\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m TfidfVectorizer\n\u001B[0;32m 6\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mpositional_encoding\u001B[39m(seq_len, d_model):\n\u001B[0;32m 7\u001B[0m pos_enc \u001B[38;5;241m=\u001B[39m np\u001B[38;5;241m.\u001B[39mzeros((seq_len, d_model))\n",
"File \u001B[1;32m~\\anaconda3\\envs\\CIS5190eval\\lib\\site-packages\\sklearn\\__init__.py:84\u001B[0m\n\u001B[0;32m 70\u001B[0m \u001B[38;5;66;03m# We are not importing the rest of scikit-learn during the build\u001B[39;00m\n\u001B[0;32m 71\u001B[0m \u001B[38;5;66;03m# process, as it may not be compiled yet\u001B[39;00m\n\u001B[0;32m 72\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m (...)\u001B[0m\n\u001B[0;32m 78\u001B[0m \u001B[38;5;66;03m# later is linked to the OpenMP runtime to make it possible to introspect\u001B[39;00m\n\u001B[0;32m 79\u001B[0m \u001B[38;5;66;03m# it and importing it first would fail if the OpenMP dll cannot be found.\u001B[39;00m\n\u001B[0;32m 80\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m (\n\u001B[0;32m 81\u001B[0m __check_build, \u001B[38;5;66;03m# noqa: F401\u001B[39;00m\n\u001B[0;32m 82\u001B[0m _distributor_init, \u001B[38;5;66;03m# noqa: F401\u001B[39;00m\n\u001B[0;32m 83\u001B[0m )\n\u001B[1;32m---> 84\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mbase\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m clone\n\u001B[0;32m 85\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mutils\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_show_versions\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m show_versions\n\u001B[0;32m 87\u001B[0m __all__ \u001B[38;5;241m=\u001B[39m [\n\u001B[0;32m 88\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcalibration\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[0;32m 89\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcluster\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m (...)\u001B[0m\n\u001B[0;32m 130\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mshow_versions\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[0;32m 131\u001B[0m ]\n",
"File \u001B[1;32m~\\anaconda3\\envs\\CIS5190eval\\lib\\site-packages\\sklearn\\base.py:19\u001B[0m\n\u001B[0;32m 17\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_config\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m config_context, get_config\n\u001B[0;32m 18\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mexceptions\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m InconsistentVersionWarning\n\u001B[1;32m---> 19\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mutils\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_estimator_html_repr\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m _HTMLDocumentationLinkMixin, estimator_html_repr\n\u001B[0;32m 20\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mutils\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_metadata_requests\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m _MetadataRequester, _routing_enabled\n\u001B[0;32m 21\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mutils\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_param_validation\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m validate_parameter_constraints\n",
"File \u001B[1;32m~\\anaconda3\\envs\\CIS5190eval\\lib\\site-packages\\sklearn\\utils\\__init__.py:11\u001B[0m\n\u001B[0;32m 9\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m _joblib, metadata_routing\n\u001B[0;32m 10\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_bunch\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m Bunch\n\u001B[1;32m---> 11\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_chunking\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m gen_batches, gen_even_slices\n\u001B[0;32m 12\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_estimator_html_repr\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m estimator_html_repr\n\u001B[0;32m 14\u001B[0m \u001B[38;5;66;03m# Make _safe_indexing importable from here for backward compat as this particular\u001B[39;00m\n\u001B[0;32m 15\u001B[0m \u001B[38;5;66;03m# helper is considered semi-private and typically very useful for third-party\u001B[39;00m\n\u001B[0;32m 16\u001B[0m \u001B[38;5;66;03m# libraries that want to comply with scikit-learn's estimator API. In particular,\u001B[39;00m\n\u001B[0;32m 17\u001B[0m \u001B[38;5;66;03m# _safe_indexing was included in our public API documentation despite the leading\u001B[39;00m\n\u001B[0;32m 18\u001B[0m \u001B[38;5;66;03m# `_` in its name.\u001B[39;00m\n",
"File \u001B[1;32m~\\anaconda3\\envs\\CIS5190eval\\lib\\site-packages\\sklearn\\utils\\_chunking.py:8\u001B[0m\n\u001B[0;32m 5\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mnumpy\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m \u001B[38;5;21;01mnp\u001B[39;00m\n\u001B[0;32m 7\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_config\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m get_config\n\u001B[1;32m----> 8\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_param_validation\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m Interval, validate_params\n\u001B[0;32m 11\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mchunk_generator\u001B[39m(gen, chunksize):\n\u001B[0;32m 12\u001B[0m \u001B[38;5;250m \u001B[39m\u001B[38;5;124;03m\"\"\"Chunk generator, ``gen`` into lists of length ``chunksize``. The last\u001B[39;00m\n\u001B[0;32m 13\u001B[0m \u001B[38;5;124;03m chunk may have a length less than ``chunksize``.\"\"\"\u001B[39;00m\n",
"File \u001B[1;32m~\\anaconda3\\envs\\CIS5190eval\\lib\\site-packages\\sklearn\\utils\\_param_validation.py:11\u001B[0m\n\u001B[0;32m 8\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mnumbers\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m Integral, Real\n\u001B[0;32m 10\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mnumpy\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m \u001B[38;5;21;01mnp\u001B[39;00m\n\u001B[1;32m---> 11\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mscipy\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01msparse\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m csr_matrix, issparse\n\u001B[0;32m 13\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_config\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m config_context, get_config\n\u001B[0;32m 14\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mvalidation\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m _is_arraylike_not_scalar\n",
"File \u001B[1;32m~\\anaconda3\\envs\\CIS5190eval\\lib\\site-packages\\scipy\\sparse\\__init__.py:297\u001B[0m\n\u001B[0;32m 295\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_csr\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;241m*\u001B[39m\n\u001B[0;32m 296\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_csc\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;241m*\u001B[39m\n\u001B[1;32m--> 297\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_lil\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;241m*\u001B[39m\n\u001B[0;32m 298\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_dok\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;241m*\u001B[39m\n\u001B[0;32m 299\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_coo\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;241m*\u001B[39m\n",
"File \u001B[1;32m~\\anaconda3\\envs\\CIS5190eval\\lib\\site-packages\\scipy\\sparse\\_lil.py:17\u001B[0m\n\u001B[0;32m 14\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_index\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m IndexMixin, INT_TYPES, _broadcast_arrays\n\u001B[0;32m 15\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01m_sputils\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m (getdtype, isshape, isscalarlike, upcast_scalar,\n\u001B[0;32m 16\u001B[0m check_shape, check_reshape_kwargs)\n\u001B[1;32m---> 17\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01m.\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m _csparsetools\n\u001B[0;32m 20\u001B[0m \u001B[38;5;28;01mclass\u001B[39;00m \u001B[38;5;21;01m_lil_base\u001B[39;00m(_spbase, IndexMixin):\n\u001B[0;32m 21\u001B[0m _format \u001B[38;5;241m=\u001B[39m \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mlil\u001B[39m\u001B[38;5;124m'\u001B[39m\n",
"File \u001B[1;32mscipy\\\\sparse\\\\_csparsetools.pyx:1\u001B[0m, in \u001B[0;36minit _csparsetools\u001B[1;34m()\u001B[0m\n",
"\u001B[1;31mValueError\u001B[0m: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject"
]
}
],
"execution_count": 12
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"dataset_train, tfidf_vectorizer = preprocess_data(\n",
" data=dataset_train,\n",
" mode=\"train\",\n",
" max_tfidf_features=8192,\n",
" max_seq_length=128\n",
")\n",
"\n",
"dataset_test, _ = preprocess_data(\n",
" data=dataset_test,\n",
" mode=\"test\",\n",
" tfidf_vectorizer=tfidf_vectorizer,\n",
" max_tfidf_features=8192,\n",
" max_seq_length=128\n",
")"
],
"id": "b605d3b4f5ff547a"
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"# Load model directly\n",
"from transformers import AutoModel\n",
"model = AutoModel.from_pretrained(\"CISProject/News-Headline-Classifier-Notebook\")"
],
"id": "b20d11caa1d25445"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-12-06T19:53:05.824524Z",
"start_time": "2024-12-06T19:53:05.550141Z"
}
},
"cell_type": "code",
"source": [
"from torch.utils.data import DataLoader\n",
"\n",
"# Define a collate function to handle the batched data\n",
"def collate_fn(batch):\n",
" freq_inputs = torch.stack([torch.tensor(item[\"freq_inputs\"]) for item in batch])\n",
" seq_inputs = torch.stack([torch.tensor(item[\"seq_inputs\"]) for item in batch])\n",
" pos_inputs = torch.stack([torch.tensor(item[\"pos_inputs\"]) for item in batch])\n",
" labels = torch.tensor([torch.tensor(item[\"labels\"]) for item in batch])\n",
" return {\"freq_inputs\": freq_inputs, \"seq_inputs\": seq_inputs, \"pos_inputs\": pos_inputs}, labels\n",
"\n",
"train_loader = DataLoader(dataset_train, batch_size=config.train[\"batch_size\"], shuffle=True,collate_fn=collate_fn)\n",
"test_loader = DataLoader(dataset_test, batch_size=config.train[\"batch_size\"], shuffle=False,collate_fn=collate_fn)\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"model.to(device)\n",
"\n",
"criterion = torch.nn.BCEWithLogitsLoss()\n",
"\n",
"def evaluate_model(model, val_loader, criterion, device=\"cuda\"):\n",
" model.eval()\n",
" val_loss = 0.0\n",
" correct = 0\n",
" total = 0\n",
"\n",
" with torch.no_grad():\n",
" for batch_inputs, labels in tqdm(val_loader, desc=\"Testing\", leave=False):\n",
" freq_inputs = batch_inputs[\"freq_inputs\"].to(device)\n",
" seq_inputs = batch_inputs[\"seq_inputs\"].to(device)\n",
" pos_inputs = batch_inputs[\"pos_inputs\"].to(device)\n",
" labels = labels[:,None].to(device)\n",
"\n",
" preds = model({\"freq_inputs\": freq_inputs, \"seq_inputs\": seq_inputs, \"pos_inputs\": pos_inputs})\n",
" loss = criterion(preds, labels)\n",
"\n",
" val_loss += loss.item()\n",
" total += labels.size(0)\n",
" correct += ((torch.sigmoid(preds) > 0.5).float() == labels).sum().item()\n",
"\n",
" print(f\"Test Loss: {val_loss / total:.4f}\")\n",
" print(f\"Test Accuracy: {correct / total:.4f}\")\n",
"\n",
"\n",
"evaluate_model(model, test_loader, criterion)\n",
"# Save the final model in Hugging Face format\n",
"\n"
],
"id": "1d23cedfe1d79660",
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'torch'",
"output_type": "error",
"traceback": [
"\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[1;31mModuleNotFoundError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[1;32mIn[1], line 1\u001B[0m\n\u001B[1;32m----> 1\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mtorch\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mutils\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mdata\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m DataLoader\n\u001B[0;32m 3\u001B[0m \u001B[38;5;66;03m# Define a collate function to handle the batched data\u001B[39;00m\n\u001B[0;32m 4\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mcollate_fn\u001B[39m(batch):\n",
"\u001B[1;31mModuleNotFoundError\u001B[0m: No module named 'torch'"
]
}
],
"execution_count": 1
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "",
"id": "549f3e0a004e80ab"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|