|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from sklearn.linear_model import LogisticRegression
|
|
import numpy as np
|
|
|
|
|
|
|
|
class Classifier(nn.Module):
|
|
def __init__(self,
|
|
combined_input,
|
|
combined_dim,
|
|
num_classes,
|
|
n_layers,
|
|
skip_in=(4,),
|
|
weight_norm=True):
|
|
super(Classifier, self).__init__()
|
|
self.num_layers = n_layers
|
|
self.skip_in = skip_in
|
|
self.model = LogisticRegression()
|
|
|
|
dims = [combined_input] + [combined_dim for _ in range(n_layers)] + [num_classes]
|
|
for l in range(0, self.num_layers + 1):
|
|
if l+1 in self.skip_in:
|
|
out_dim = dims[l + 1] + dims[0]
|
|
dims[l + 1] = out_dim
|
|
else:
|
|
out_dim = dims[l + 1]
|
|
lin = nn.Linear(dims[l], out_dim)
|
|
if weight_norm:
|
|
lin = nn.utils.weight_norm(lin)
|
|
setattr(self, "lin" + str(l), lin)
|
|
self.activation = nn.ReLU
|
|
|
|
def forward(self, inputs):
|
|
|
|
x = inputs
|
|
for l in range(0, self.num_layers + 1):
|
|
lin = getattr(self, "lin" + str(l))
|
|
|
|
if l+1 in self.skip_in:
|
|
x = torch.cat([x, inputs], 1) / np.sqrt(2)
|
|
x = lin(x)
|
|
|
|
if l < self.num_layers:
|
|
x = self.activation()(x)
|
|
|
|
|
|
|
|
return x |