Delete train&test.ipynb
Browse files- train&test.ipynb +0 -1309
train&test.ipynb
DELETED
@@ -1,1309 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"metadata": {},
|
5 |
-
"cell_type": "markdown",
|
6 |
-
"source": [
|
7 |
-
"# Installing dependencies\n",
|
8 |
-
"## Please make a copy of this notebook."
|
9 |
-
],
|
10 |
-
"id": "13156d7ed48b282"
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"metadata": {},
|
14 |
-
"cell_type": "markdown",
|
15 |
-
"source": [
|
16 |
-
"# Huggingface login\n",
|
17 |
-
"You will require your personal token."
|
18 |
-
],
|
19 |
-
"id": "432a756039e6399"
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"metadata": {},
|
23 |
-
"cell_type": "code",
|
24 |
-
"source": "source": [
|
25 |
-
"!pip install geopy > delete.txt\n",
|
26 |
-
"!pip install datasets > delete.txt\n",
|
27 |
-
"!pip install torch torchvision datasets > delete.txt\n",
|
28 |
-
"!pip install huggingface_hub > delete.txt\n",
|
29 |
-
"!pip install pyhocon > delete.txt\n",
|
30 |
-
"!pip install transformers > delete.txt\n",
|
31 |
-
"!pip install gensim > delete.txt\n",
|
32 |
-
"!rm delete.txt"
|
33 |
-
],
|
34 |
-
"id": "2e73da09a7c6171e",
|
35 |
-
"outputs": [],
|
36 |
-
"execution_count": null
|
37 |
-
},
|
38 |
-
{
|
39 |
-
"metadata": {},
|
40 |
-
"cell_type": "markdown",
|
41 |
-
"source": "# Part 1: Load Data",
|
42 |
-
"id": "c731d9c1ebb477dc"
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"metadata": {},
|
46 |
-
"cell_type": "markdown",
|
47 |
-
"source": "## Downloading the train and test dataset",
|
48 |
-
"id": "14070f20b547688f"
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"metadata": {},
|
52 |
-
"cell_type": "markdown",
|
53 |
-
"source": "",
|
54 |
-
"id": "b8920847b7cc378d"
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"metadata": {},
|
58 |
-
"cell_type": "code",
|
59 |
-
"source": [
|
60 |
-
"from datasets import load_dataset\n",
|
61 |
-
"\n",
|
62 |
-
"dataset_train = load_dataset(\"CISProject/FOX_NBC\", split=\"train\")\n",
|
63 |
-
"dataset_test = load_dataset(\"CISProject/FOX_NBC\", split=\"test\")\n",
|
64 |
-
"# dataset_test = load_dataset(\"CISProject/FOX_NBC\", split=\"test_data_random_subset\")\n"
|
65 |
-
],
|
66 |
-
"id": "877c90c978d62b7d",
|
67 |
-
"outputs": [],
|
68 |
-
"execution_count": 12
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"metadata": {
|
72 |
-
"ExecuteTime": {
|
73 |
-
"end_time": "2024-12-16T18:33:00.318956Z",
|
74 |
-
"start_time": "2024-12-16T18:33:00.310428Z"
|
75 |
-
}
|
76 |
-
},
|
77 |
-
"cell_type": "code",
|
78 |
-
"source": [
|
79 |
-
"import numpy as np\n",
|
80 |
-
"import torch\n",
|
81 |
-
"import re\n",
|
82 |
-
"from transformers import BertTokenizer\n",
|
83 |
-
"from transformers import RobertaTokenizer\n",
|
84 |
-
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
85 |
-
"from gensim.models import KeyedVectors\n",
|
86 |
-
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
87 |
-
"\n",
|
88 |
-
"def preprocess_data(data,\n",
|
89 |
-
" mode=\"train\",\n",
|
90 |
-
" vectorizer=None,\n",
|
91 |
-
" w2v_model=None,\n",
|
92 |
-
" max_features=4096,\n",
|
93 |
-
" max_seq_length=128,\n",
|
94 |
-
" num_proc=4):\n",
|
95 |
-
" if w2v_model is None:\n",
|
96 |
-
" raise ValueError(\"w2v_model must be provided for Word2Vec embeddings.\")\n",
|
97 |
-
"\n",
|
98 |
-
" # tokenizer = BertTokenizer.from_pretrained(\"bert-base-uncased\")\n",
|
99 |
-
" tokenizer = RobertaTokenizer.from_pretrained(\"roberta-base\")\n",
|
100 |
-
" # 1. Clean text once\n",
|
101 |
-
" def clean_text(examples):\n",
|
102 |
-
" import re\n",
|
103 |
-
" cleaned = []\n",
|
104 |
-
" for text in examples[\"title\"]:\n",
|
105 |
-
" text = text.lower()\n",
|
106 |
-
" text = re.sub(r'[^\\w\\s]', '', text)\n",
|
107 |
-
" text = text.strip()\n",
|
108 |
-
" cleaned.append(text)\n",
|
109 |
-
" return {\"clean_title\": cleaned}\n",
|
110 |
-
"\n",
|
111 |
-
" data = data.map(clean_text, batched=True, num_proc=num_proc)\n",
|
112 |
-
"\n",
|
113 |
-
" # 2. Fit CountVectorizer on training data if needed\n",
|
114 |
-
" if mode == \"train\" and vectorizer is None:\n",
|
115 |
-
" # Collect all cleaned titles to fit\n",
|
116 |
-
" all_titles = data[\"clean_title\"]\n",
|
117 |
-
" #vectorizer = CountVectorizer(max_features=max_features, ngram_range=(1,2))\n",
|
118 |
-
" vectorizer = TfidfVectorizer(max_features=max_features)\n",
|
119 |
-
" vectorizer.fit(all_titles)\n",
|
120 |
-
" print(\"vectorizer fitted on training data.\")\n",
|
121 |
-
"\n",
|
122 |
-
" # 3. Transform titles with vectorizer once\n",
|
123 |
-
" def vectorize_batch(examples):\n",
|
124 |
-
" import numpy as np\n",
|
125 |
-
" freq = vectorizer.transform(examples[\"clean_title\"]).toarray().astype(np.float32)\n",
|
126 |
-
" return {\"freq_inputs\": freq}\n",
|
127 |
-
"\n",
|
128 |
-
" data = data.map(vectorize_batch, batched=True, num_proc=num_proc)\n",
|
129 |
-
"\n",
|
130 |
-
" # 4. Tokenize with BERT once\n",
|
131 |
-
" def tokenize_batch(examples):\n",
|
132 |
-
" tokenized = tokenizer(\n",
|
133 |
-
" examples[\"title\"],\n",
|
134 |
-
" padding=\"max_length\",\n",
|
135 |
-
" truncation=True,\n",
|
136 |
-
" max_length=max_seq_length\n",
|
137 |
-
" )\n",
|
138 |
-
" return {\n",
|
139 |
-
" \"input_ids\": tokenized[\"input_ids\"],\n",
|
140 |
-
" \"attention_mask\": tokenized[\"attention_mask\"]\n",
|
141 |
-
" }\n",
|
142 |
-
"\n",
|
143 |
-
" data = data.map(tokenize_batch, batched=True, num_proc=num_proc)\n",
|
144 |
-
"\n",
|
145 |
-
" # 5. Convert titles into tokens for W2V\n",
|
146 |
-
" def split_tokens(examples):\n",
|
147 |
-
" tokens_list = [t.split() for t in examples[\"clean_title\"]]\n",
|
148 |
-
" return {\"tokens\": tokens_list}\n",
|
149 |
-
"\n",
|
150 |
-
" data = data.map(split_tokens, batched=True, num_proc=num_proc)\n",
|
151 |
-
"\n",
|
152 |
-
" # Build an embedding dictionary for all unique tokens (do this once before embedding map)\n",
|
153 |
-
" unique_tokens = set()\n",
|
154 |
-
" for tokens in data[\"tokens\"]:\n",
|
155 |
-
" unique_tokens.update(tokens)\n",
|
156 |
-
"\n",
|
157 |
-
" embedding_dim = w2v_model.vector_size\n",
|
158 |
-
" embedding_dict = {}\n",
|
159 |
-
" for tk in unique_tokens:\n",
|
160 |
-
" if tk in w2v_model:\n",
|
161 |
-
" embedding_dict[tk] = w2v_model[tk].astype(np.float32)\n",
|
162 |
-
" else:\n",
|
163 |
-
" embedding_dict[tk] = np.zeros((embedding_dim,), dtype=np.float32)\n",
|
164 |
-
"\n",
|
165 |
-
" def w2v_embedding_batch(examples):\n",
|
166 |
-
" import numpy as np\n",
|
167 |
-
" batch_w2v = []\n",
|
168 |
-
" for tokens in examples[\"tokens\"]:\n",
|
169 |
-
" vectors = [embedding_dict[tk] for tk in tokens[:max_seq_length]]\n",
|
170 |
-
" if len(vectors) < max_seq_length:\n",
|
171 |
-
" vectors += [np.zeros((embedding_dim,), dtype=np.float32)] * (max_seq_length - len(vectors))\n",
|
172 |
-
" batch_w2v.append(vectors)\n",
|
173 |
-
" return {\"pos_inputs\": batch_w2v}\n",
|
174 |
-
"\n",
|
175 |
-
"\n",
|
176 |
-
" data = data.map(w2v_embedding_batch, batched=True, batch_size=32, num_proc=num_proc)\n",
|
177 |
-
"\n",
|
178 |
-
" # 7. Create labels\n",
|
179 |
-
" def make_labels(examples):\n",
|
180 |
-
" labels = examples[\"labels\"]\n",
|
181 |
-
" return {\"labels\": labels}\n",
|
182 |
-
"\n",
|
183 |
-
" data = data.map(make_labels, batched=True, num_proc=num_proc)\n",
|
184 |
-
"\n",
|
185 |
-
" # Convert freq_inputs and pos_inputs to torch tensors in a final map step\n",
|
186 |
-
" def to_tensors(examples):\n",
|
187 |
-
" import torch\n",
|
188 |
-
"\n",
|
189 |
-
" freq_inputs = torch.tensor(examples[\"freq_inputs\"], dtype=torch.float32)\n",
|
190 |
-
" input_ids = torch.tensor(examples[\"input_ids\"])\n",
|
191 |
-
" attention_mask = torch.tensor(examples[\"attention_mask\"])\n",
|
192 |
-
" pos_inputs = torch.tensor(examples[\"pos_inputs\"], dtype=torch.float32)\n",
|
193 |
-
" labels = torch.tensor(examples[\"labels\"],dtype=torch.long)\n",
|
194 |
-
"\n",
|
195 |
-
" # seq_inputs shape: (batch_size, 2, seq_len)\n",
|
196 |
-
" seq_inputs = torch.stack([input_ids, attention_mask], dim=1)\n",
|
197 |
-
"\n",
|
198 |
-
" return {\n",
|
199 |
-
" \"freq_inputs\": freq_inputs,\n",
|
200 |
-
" \"seq_inputs\": seq_inputs,\n",
|
201 |
-
" \"pos_inputs\": pos_inputs,\n",
|
202 |
-
" \"labels\": labels\n",
|
203 |
-
" }\n",
|
204 |
-
"\n",
|
205 |
-
" # Apply final conversion to tensor\n",
|
206 |
-
" processed_data = data.map(to_tensors, batched=True, num_proc=num_proc)\n",
|
207 |
-
"\n",
|
208 |
-
" return processed_data, vectorizer\n"
|
209 |
-
],
|
210 |
-
"id": "dc2ba675ce880d6d",
|
211 |
-
"outputs": [],
|
212 |
-
"execution_count": 13
|
213 |
-
},
|
214 |
-
{
|
215 |
-
"metadata": {
|
216 |
-
"ExecuteTime": {
|
217 |
-
"end_time": "2024-12-16T18:33:26.890102Z",
|
218 |
-
"start_time": "2024-12-16T18:33:00.323837Z"
|
219 |
-
}
|
220 |
-
},
|
221 |
-
"cell_type": "code",
|
222 |
-
"source": [
|
223 |
-
"from gensim.models import KeyedVectors\n",
|
224 |
-
"w2v_model = KeyedVectors.load_word2vec_format(\"./GoogleNews-vectors-negative300.bin\", binary=True)\n",
|
225 |
-
"\n",
|
226 |
-
"dataset_train,vectorizer = preprocess_data(\n",
|
227 |
-
" data=dataset_train,\n",
|
228 |
-
" mode=\"train\",\n",
|
229 |
-
" w2v_model=w2v_model,\n",
|
230 |
-
" max_features=8192,\n",
|
231 |
-
" max_seq_length=128\n",
|
232 |
-
")\n",
|
233 |
-
"\n",
|
234 |
-
"dataset_test, _ = preprocess_data(\n",
|
235 |
-
" data=dataset_test,\n",
|
236 |
-
" mode=\"test\",\n",
|
237 |
-
" vectorizer=vectorizer,\n",
|
238 |
-
" w2v_model=w2v_model,\n",
|
239 |
-
" max_features=8192,\n",
|
240 |
-
" max_seq_length=128\n",
|
241 |
-
")"
|
242 |
-
],
|
243 |
-
"id": "158b99950fb22d1",
|
244 |
-
"outputs": [
|
245 |
-
{
|
246 |
-
"name": "stdout",
|
247 |
-
"output_type": "stream",
|
248 |
-
"text": [
|
249 |
-
"vectorizer fitted on training data.\n"
|
250 |
-
]
|
251 |
-
}
|
252 |
-
],
|
253 |
-
"execution_count": 14
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"metadata": {
|
257 |
-
"ExecuteTime": {
|
258 |
-
"end_time": "2024-12-16T18:33:26.904401Z",
|
259 |
-
"start_time": "2024-12-16T18:33:26.899278Z"
|
260 |
-
}
|
261 |
-
},
|
262 |
-
"cell_type": "code",
|
263 |
-
"source": [
|
264 |
-
"print(dataset_train)\n",
|
265 |
-
"print(dataset_test)"
|
266 |
-
],
|
267 |
-
"id": "edd80d33175c96a0",
|
268 |
-
"outputs": [
|
269 |
-
{
|
270 |
-
"name": "stdout",
|
271 |
-
"output_type": "stream",
|
272 |
-
"text": [
|
273 |
-
"Dataset({\n",
|
274 |
-
" features: ['title', 'outlet', 'index', 'url', 'labels', 'clean_title', 'freq_inputs', 'input_ids', 'attention_mask', 'tokens', 'pos_inputs', 'seq_inputs'],\n",
|
275 |
-
" num_rows: 3044\n",
|
276 |
-
"})\n",
|
277 |
-
"Dataset({\n",
|
278 |
-
" features: ['title', 'outlet', 'index', 'url', 'labels', 'clean_title', 'freq_inputs', 'input_ids', 'attention_mask', 'tokens', 'pos_inputs', 'seq_inputs'],\n",
|
279 |
-
" num_rows: 761\n",
|
280 |
-
"})\n"
|
281 |
-
]
|
282 |
-
}
|
283 |
-
],
|
284 |
-
"execution_count": 15
|
285 |
-
},
|
286 |
-
{
|
287 |
-
"metadata": {},
|
288 |
-
"cell_type": "markdown",
|
289 |
-
"source": "# Part 2: Model",
|
290 |
-
"id": "c9a49fc1fbca29d7"
|
291 |
-
},
|
292 |
-
{
|
293 |
-
"metadata": {},
|
294 |
-
"cell_type": "markdown",
|
295 |
-
"source": "## Defining the Custom Model",
|
296 |
-
"id": "aebe5e51f0e611cc"
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"metadata": {},
|
300 |
-
"cell_type": "markdown",
|
301 |
-
"source": "",
|
302 |
-
"id": "f0eae08a025b6ed9"
|
303 |
-
},
|
304 |
-
{
|
305 |
-
"metadata": {
|
306 |
-
"ExecuteTime": {
|
307 |
-
"end_time": "2024-12-16T18:33:26.937874Z",
|
308 |
-
"start_time": "2024-12-16T18:33:26.926248Z"
|
309 |
-
}
|
310 |
-
},
|
311 |
-
"cell_type": "code",
|
312 |
-
"source": [
|
313 |
-
"# TODO: import all packages necessary for your custom model\n",
|
314 |
-
"import pandas as pd\n",
|
315 |
-
"import os\n",
|
316 |
-
"from torch.utils.data import DataLoader\n",
|
317 |
-
"from transformers import PreTrainedModel, PretrainedConfig, AutoConfig, AutoModel\n",
|
318 |
-
"import torch\n",
|
319 |
-
"import torch.nn as nn\n",
|
320 |
-
"from transformers import RobertaModel, RobertaConfig,RobertaForSequenceClassification, BertModel\n",
|
321 |
-
"from model.network import Classifier\n",
|
322 |
-
"from model.frequential import FreqNetwork\n",
|
323 |
-
"from model.sequential import SeqNetwork\n",
|
324 |
-
"from model.positional import PosNetwork\n",
|
325 |
-
"\n",
|
326 |
-
"class CustomConfig(PretrainedConfig):\n",
|
327 |
-
" model_type = \"headlineclassifier\"\n",
|
328 |
-
"\n",
|
329 |
-
" def __init__(\n",
|
330 |
-
" self,\n",
|
331 |
-
" base_exp_dir=\"./exp/fox_nbc/\",\n",
|
332 |
-
" # dataset={\"data_dir\": \"./data/CASE_NAME/data.csv\", \"transform\": True},\n",
|
333 |
-
" train={\n",
|
334 |
-
" \"learning_rate\": 2e-5,\n",
|
335 |
-
" \"learning_rate_alpha\": 0.05,\n",
|
336 |
-
" \"end_iter\": 10,\n",
|
337 |
-
" \"batch_size\": 32,\n",
|
338 |
-
" \"warm_up_end\": 2,\n",
|
339 |
-
" \"anneal_end\": 5,\n",
|
340 |
-
" \"save_freq\": 1,\n",
|
341 |
-
" \"val_freq\": 1,\n",
|
342 |
-
" },\n",
|
343 |
-
" model={\n",
|
344 |
-
" \"freq\": {\n",
|
345 |
-
" \"tfidf_input_dim\": 8145,\n",
|
346 |
-
" \"tfidf_output_dim\": 128,\n",
|
347 |
-
" \"tfidf_hidden_dim\": 512,\n",
|
348 |
-
" \"n_layers\": 2,\n",
|
349 |
-
" \"skip_in\": [80],\n",
|
350 |
-
" \"weight_norm\": True,\n",
|
351 |
-
" },\n",
|
352 |
-
" \"pos\": {\n",
|
353 |
-
" \"input_dim\": 300,\n",
|
354 |
-
" \"output_dim\": 128,\n",
|
355 |
-
" \"hidden_dim\": 256,\n",
|
356 |
-
" \"n_layers\": 2,\n",
|
357 |
-
" \"skip_in\": [80],\n",
|
358 |
-
" \"weight_norm\": True,\n",
|
359 |
-
" },\n",
|
360 |
-
" \"cls\": {\n",
|
361 |
-
" \"combined_input\": 1024, #1024\n",
|
362 |
-
" \"combined_dim\": 128,\n",
|
363 |
-
" \"num_classes\": 2,\n",
|
364 |
-
" \"n_layers\": 2,\n",
|
365 |
-
" \"skip_in\": [80],\n",
|
366 |
-
" \"weight_norm\": True,\n",
|
367 |
-
" },\n",
|
368 |
-
" },\n",
|
369 |
-
" **kwargs,\n",
|
370 |
-
" ):\n",
|
371 |
-
" super().__init__(**kwargs)\n",
|
372 |
-
"\n",
|
373 |
-
" self.base_exp_dir = base_exp_dir\n",
|
374 |
-
" # self.dataset = dataset\n",
|
375 |
-
" self.train = train\n",
|
376 |
-
" self.model = model\n",
|
377 |
-
"\n",
|
378 |
-
"# TODO: define all parameters needed for your model, as well as calling the model itself\n",
|
379 |
-
"class CustomModel(PreTrainedModel):\n",
|
380 |
-
" config_class = CustomConfig\n",
|
381 |
-
"\n",
|
382 |
-
" def __init__(self, config):\n",
|
383 |
-
" super().__init__(config)\n",
|
384 |
-
" self.conf = config\n",
|
385 |
-
" self.freq = FreqNetwork(**self.conf.model[\"freq\"])\n",
|
386 |
-
" self.pos = PosNetwork(**self.conf.model[\"pos\"])\n",
|
387 |
-
" self.cls = Classifier(**self.conf.model[\"cls\"])\n",
|
388 |
-
" self.fc = nn.Linear(self.conf.model[\"cls\"][\"combined_input\"],2)\n",
|
389 |
-
" self.seq = RobertaModel.from_pretrained(\"roberta-base\")\n",
|
390 |
-
" # self.seq = BertModel.from_pretrained(\"bert-base-uncased\")\n",
|
391 |
-
" #for param in self.roberta.parameters():\n",
|
392 |
-
" # param.requires_grad = False\n",
|
393 |
-
" self.dropout = nn.Dropout(0.2)\n",
|
394 |
-
"\n",
|
395 |
-
" def forward(self, x):\n",
|
396 |
-
" freq_inputs = x[\"freq_inputs\"]\n",
|
397 |
-
" seq_inputs = x[\"seq_inputs\"]\n",
|
398 |
-
" pos_inputs = x[\"pos_inputs\"]\n",
|
399 |
-
" seq_feature = self.seq(\n",
|
400 |
-
" input_ids=seq_inputs[:,0,:],\n",
|
401 |
-
" attention_mask=seq_inputs[:,1,:]\n",
|
402 |
-
" ).pooler_output # last_hidden_state[:, 0, :]\n",
|
403 |
-
" freq_feature = self.freq(freq_inputs) # Shape: (batch_size, 128)\n",
|
404 |
-
"\n",
|
405 |
-
" pos_feature = self.pos(pos_inputs) #Shape: (batch_size, 128)\n",
|
406 |
-
" inputs = torch.cat((seq_feature, freq_feature, pos_feature), dim=1) # Shape: (batch_size, 384)\n",
|
407 |
-
" # inputs = torch.cat((seq_feature, freq_feature), dim=1) # Shape: (batch_size,256)\n",
|
408 |
-
" # inputs = seq_feature\n",
|
409 |
-
"\n",
|
410 |
-
" x = inputs\n",
|
411 |
-
" x = self.dropout(x)\n",
|
412 |
-
" outputs = self.fc(x)\n",
|
413 |
-
"\n",
|
414 |
-
" return outputs\n",
|
415 |
-
"\n",
|
416 |
-
" def save_model(self, save_path):\n",
|
417 |
-
" \"\"\"Save the model locally using the Hugging Face format.\"\"\"\n",
|
418 |
-
" self.save_pretrained(save_path)\n",
|
419 |
-
"\n",
|
420 |
-
" def push_model(self, repo_name):\n",
|
421 |
-
" \"\"\"Push the model to the Hugging Face Hub.\"\"\"\n",
|
422 |
-
" self.push_to_hub(repo_name)"
|
423 |
-
],
|
424 |
-
"id": "21f079d0c52d7d",
|
425 |
-
"outputs": [],
|
426 |
-
"execution_count": 16
|
427 |
-
},
|
428 |
-
{
|
429 |
-
"metadata": {
|
430 |
-
"ExecuteTime": {
|
431 |
-
"end_time": "2024-12-16T18:33:27.235482Z",
|
432 |
-
"start_time": "2024-12-16T18:33:26.951564Z"
|
433 |
-
}
|
434 |
-
},
|
435 |
-
"cell_type": "code",
|
436 |
-
"source": [
|
437 |
-
"from huggingface_hub import hf_hub_download\n",
|
438 |
-
"\n",
|
439 |
-
"AutoConfig.register(\"headlineclassifier\", CustomConfig)\n",
|
440 |
-
"AutoModel.register(CustomConfig, CustomModel)\n",
|
441 |
-
"config = CustomConfig()\n",
|
442 |
-
"model = CustomModel(config)\n",
|
443 |
-
"\n",
|
444 |
-
"REPO_NAME = \"CISProject/News-Headline-Classifier-Notebook\" # TODO: PROVIDE A STRING TO YOUR REPO ON HUGGINGFACE"
|
445 |
-
],
|
446 |
-
"id": "b6ba3f96d3ce21",
|
447 |
-
"outputs": [
|
448 |
-
{
|
449 |
-
"name": "stderr",
|
450 |
-
"output_type": "stream",
|
451 |
-
"text": [
|
452 |
-
"Some weights of RobertaModel were not initialized from the model checkpoint at roberta-base and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
|
453 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
454 |
-
]
|
455 |
-
}
|
456 |
-
],
|
457 |
-
"execution_count": 17
|
458 |
-
},
|
459 |
-
{
|
460 |
-
"metadata": {
|
461 |
-
"ExecuteTime": {
|
462 |
-
"end_time": "2024-12-16T18:33:27.279248Z",
|
463 |
-
"start_time": "2024-12-16T18:33:27.261675Z"
|
464 |
-
}
|
465 |
-
},
|
466 |
-
"cell_type": "code",
|
467 |
-
"source": [
|
468 |
-
"import torch\n",
|
469 |
-
"from tqdm import tqdm\n",
|
470 |
-
"import os\n",
|
471 |
-
"\n",
|
472 |
-
"\n",
|
473 |
-
"class Trainer:\n",
|
474 |
-
" def __init__(self, model, train_loader, val_loader, config, device=\"cuda\"):\n",
|
475 |
-
" self.model = model.to(device)\n",
|
476 |
-
" self.train_loader = train_loader\n",
|
477 |
-
" self.val_loader = val_loader\n",
|
478 |
-
" self.device = device\n",
|
479 |
-
" self.conf = config\n",
|
480 |
-
"\n",
|
481 |
-
" self.end_iter = self.conf.train[\"end_iter\"]\n",
|
482 |
-
" self.save_freq = self.conf.train[\"save_freq\"]\n",
|
483 |
-
" self.val_freq = self.conf.train[\"val_freq\"]\n",
|
484 |
-
"\n",
|
485 |
-
" self.batch_size = self.conf.train['batch_size']\n",
|
486 |
-
" self.learning_rate = self.conf.train['learning_rate']\n",
|
487 |
-
" self.learning_rate_alpha = self.conf.train['learning_rate_alpha']\n",
|
488 |
-
" self.warm_up_end = self.conf.train['warm_up_end']\n",
|
489 |
-
" self.anneal_end = self.conf.train['anneal_end']\n",
|
490 |
-
"\n",
|
491 |
-
" self.optimizer = torch.optim.Adam(model.parameters(), lr=self.learning_rate)\n",
|
492 |
-
" #self.criterion = torch.nn.BCEWithLogitsLoss()\n",
|
493 |
-
" self.criterion = torch.nn.CrossEntropyLoss()\n",
|
494 |
-
" self.save_path = os.path.join(self.conf.base_exp_dir, \"checkpoints\")\n",
|
495 |
-
" os.makedirs(self.save_path, exist_ok=True)\n",
|
496 |
-
"\n",
|
497 |
-
" self.iter_step = 0\n",
|
498 |
-
"\n",
|
499 |
-
" self.val_loss = None\n",
|
500 |
-
"\n",
|
501 |
-
" def get_cos_anneal_ratio(self):\n",
|
502 |
-
" if self.anneal_end == 0.0:\n",
|
503 |
-
" return 1.0\n",
|
504 |
-
" else:\n",
|
505 |
-
" return np.min([1.0, self.iter_step / self.anneal_end])\n",
|
506 |
-
"\n",
|
507 |
-
" def update_learning_rate(self):\n",
|
508 |
-
" if self.iter_step < self.warm_up_end:\n",
|
509 |
-
" learning_factor = self.iter_step / self.warm_up_end\n",
|
510 |
-
" else:\n",
|
511 |
-
" alpha = self.learning_rate_alpha\n",
|
512 |
-
" progress = (self.iter_step - self.warm_up_end) / (self.end_iter - self.warm_up_end)\n",
|
513 |
-
" learning_factor = (np.cos(np.pi * progress) + 1.0) * 0.5 * (1 - alpha) + alpha\n",
|
514 |
-
"\n",
|
515 |
-
" for g in self.optimizer.param_groups:\n",
|
516 |
-
" g['lr'] = self.learning_rate * learning_factor\n",
|
517 |
-
"\n",
|
518 |
-
" def train(self):\n",
|
519 |
-
" for epoch in range(self.end_iter):\n",
|
520 |
-
" self.update_learning_rate()\n",
|
521 |
-
" self.model.train()\n",
|
522 |
-
" epoch_loss = 0.0\n",
|
523 |
-
" correct = 0\n",
|
524 |
-
" total = 0\n",
|
525 |
-
"\n",
|
526 |
-
" for batch_inputs, labels in tqdm(self.train_loader, desc=f\"Epoch {epoch + 1}/{self.end_iter}\"):\n",
|
527 |
-
" # Extract features\n",
|
528 |
-
"\n",
|
529 |
-
" freq_inputs = batch_inputs[\"freq_inputs\"].to(self.device)\n",
|
530 |
-
" seq_inputs = batch_inputs[\"seq_inputs\"].to(self.device)\n",
|
531 |
-
" pos_inputs = batch_inputs[\"pos_inputs\"].to(self.device)\n",
|
532 |
-
" # y_train = labels.to(self.device)[:,None]\n",
|
533 |
-
" y_train = labels.to(self.device)\n",
|
534 |
-
"\n",
|
535 |
-
" # Forward pass\n",
|
536 |
-
" preds = self.model({\"freq_inputs\": freq_inputs, \"seq_inputs\": seq_inputs, \"pos_inputs\": pos_inputs})\n",
|
537 |
-
" loss = self.criterion(preds, y_train)\n",
|
538 |
-
"\n",
|
539 |
-
" # preds = (torch.sigmoid(preds) > 0.5).int()\n",
|
540 |
-
" # Backward pass\n",
|
541 |
-
" self.optimizer.zero_grad()\n",
|
542 |
-
" loss.backward()\n",
|
543 |
-
" self.optimizer.step()\n",
|
544 |
-
" _, preds = torch.max(preds, dim=1)\n",
|
545 |
-
" # Metrics\n",
|
546 |
-
" epoch_loss += loss.item()\n",
|
547 |
-
" total += y_train.size(0)\n",
|
548 |
-
" # print(preds.shape)\n",
|
549 |
-
" correct += (preds == y_train).sum().item()\n",
|
550 |
-
"\n",
|
551 |
-
" # Log epoch metrics\n",
|
552 |
-
" print(f\"Train Loss: {epoch_loss / len(self.train_loader):.4f}\")\n",
|
553 |
-
" print(f\"Train Accuracy: {correct / total:.4f}\")\n",
|
554 |
-
"\n",
|
555 |
-
" # Validation and Save Checkpoints\n",
|
556 |
-
" if (epoch + 1) % self.val_freq == 0:\n",
|
557 |
-
" self.val()\n",
|
558 |
-
" if (epoch + 1) % self.save_freq == 0:\n",
|
559 |
-
" self.save_checkpoint(epoch + 1)\n",
|
560 |
-
"\n",
|
561 |
-
" # Update learning rate\n",
|
562 |
-
" self.iter_step += 1\n",
|
563 |
-
" self.update_learning_rate()\n",
|
564 |
-
"\n",
|
565 |
-
"\n",
|
566 |
-
" def val(self):\n",
|
567 |
-
" self.model.eval()\n",
|
568 |
-
" val_loss = 0.0\n",
|
569 |
-
" correct = 0\n",
|
570 |
-
" total = 0\n",
|
571 |
-
"\n",
|
572 |
-
" with torch.no_grad():\n",
|
573 |
-
" for batch_inputs, labels in tqdm(self.val_loader, desc=\"Validation\", leave=False):\n",
|
574 |
-
" freq_inputs = batch_inputs[\"freq_inputs\"].to(self.device)\n",
|
575 |
-
" seq_inputs = batch_inputs[\"seq_inputs\"].to(self.device)\n",
|
576 |
-
" pos_inputs = batch_inputs[\"pos_inputs\"].to(self.device)\n",
|
577 |
-
" y_val = labels.to(self.device)\n",
|
578 |
-
"\n",
|
579 |
-
" preds = self.model({\"freq_inputs\": freq_inputs, \"seq_inputs\": seq_inputs, \"pos_inputs\": pos_inputs})\n",
|
580 |
-
" loss = self.criterion(preds, y_val)\n",
|
581 |
-
" # preds = (torch.sigmoid(preds)>0.5).float()\n",
|
582 |
-
" _, preds = torch.max(preds, dim=1)\n",
|
583 |
-
" val_loss += loss.item()\n",
|
584 |
-
" total += y_val.size(0)\n",
|
585 |
-
" correct += (preds == y_val).sum().item()\n",
|
586 |
-
" if self.val_loss is None or val_loss < self.val_loss:\n",
|
587 |
-
" self.val_loss = val_loss\n",
|
588 |
-
" self.save_checkpoint(\"best\")\n",
|
589 |
-
" # Log validation metrics\n",
|
590 |
-
" print(f\"Validation Loss: {val_loss / len(self.val_loader):.4f}\")\n",
|
591 |
-
" print(f\"Validation Accuracy: {correct / total:.4f}\")\n",
|
592 |
-
"\n",
|
593 |
-
" def save_checkpoint(self, epoch):\n",
|
594 |
-
" \"\"\"Save model in Hugging Face format.\"\"\"\n",
|
595 |
-
" checkpoint_dir = os.path.join(self.save_path, f\"checkpoint_epoch_{epoch}\")\n",
|
596 |
-
" if epoch ==\"best\":\n",
|
597 |
-
" checkpoint_dir = os.path.join(self.save_path, \"best\")\n",
|
598 |
-
" self.model.save_pretrained(checkpoint_dir)\n",
|
599 |
-
" print(f\"Checkpoint saved at {checkpoint_dir}\")"
|
600 |
-
],
|
601 |
-
"id": "7be377251b81a25d",
|
602 |
-
"outputs": [],
|
603 |
-
"execution_count": 18
|
604 |
-
},
|
605 |
-
{
|
606 |
-
"metadata": {
|
607 |
-
"ExecuteTime": {
|
608 |
-
"end_time": "2024-12-16T18:49:49.983176Z",
|
609 |
-
"start_time": "2024-12-16T18:33:27.283252Z"
|
610 |
-
}
|
611 |
-
},
|
612 |
-
"cell_type": "code",
|
613 |
-
"source": [
|
614 |
-
"from torch.utils.data import DataLoader\n",
|
615 |
-
"\n",
|
616 |
-
"# Define a collate function to handle the batched data\n",
|
617 |
-
"def collate_fn(batch):\n",
|
618 |
-
" freq_inputs = torch.stack([torch.tensor(item[\"freq_inputs\"]) for item in batch])\n",
|
619 |
-
" seq_inputs = torch.stack([torch.tensor(item[\"seq_inputs\"]) for item in batch])\n",
|
620 |
-
" pos_inputs = torch.stack([torch.tensor(item[\"pos_inputs\"]) for item in batch])\n",
|
621 |
-
" labels = torch.tensor([torch.tensor(item[\"labels\"],dtype=torch.long) for item in batch])\n",
|
622 |
-
" return {\"freq_inputs\": freq_inputs, \"seq_inputs\": seq_inputs, \"pos_inputs\": pos_inputs}, labels\n",
|
623 |
-
"\n",
|
624 |
-
"train_loader = DataLoader(dataset_train, batch_size=config.train[\"batch_size\"], shuffle=True,collate_fn=collate_fn)\n",
|
625 |
-
"test_loader = DataLoader(dataset_test, batch_size=config.train[\"batch_size\"], shuffle=False,collate_fn=collate_fn)\n",
|
626 |
-
"trainer = Trainer(model, train_loader, test_loader, config)\n",
|
627 |
-
"\n",
|
628 |
-
"# Train the model\n",
|
629 |
-
"trainer.train()\n",
|
630 |
-
"# Save the final model in Hugging Face format\n",
|
631 |
-
"final_save_path = os.path.join(config.base_exp_dir, \"checkpoints\")\n",
|
632 |
-
"model.save_pretrained(final_save_path)\n",
|
633 |
-
"print(f\"Final model saved at {final_save_path}\")\n"
|
634 |
-
],
|
635 |
-
"id": "dd1749c306f148eb",
|
636 |
-
"outputs": [
|
637 |
-
{
|
638 |
-
"name": "stderr",
|
639 |
-
"output_type": "stream",
|
640 |
-
"text": [
|
641 |
-
"Epoch 1/10: 100%|██████████| 96/96 [02:28<00:00, 1.55s/it]\n"
|
642 |
-
]
|
643 |
-
},
|
644 |
-
{
|
645 |
-
"name": "stdout",
|
646 |
-
"output_type": "stream",
|
647 |
-
"text": [
|
648 |
-
"Train Loss: 0.6943\n",
|
649 |
-
"Train Accuracy: 0.4947\n"
|
650 |
-
]
|
651 |
-
},
|
652 |
-
{
|
653 |
-
"name": "stderr",
|
654 |
-
"output_type": "stream",
|
655 |
-
"text": [
|
656 |
-
" \r"
|
657 |
-
]
|
658 |
-
},
|
659 |
-
{
|
660 |
-
"name": "stdout",
|
661 |
-
"output_type": "stream",
|
662 |
-
"text": [
|
663 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\best\n",
|
664 |
-
"Validation Loss: 0.6931\n",
|
665 |
-
"Validation Accuracy: 0.4980\n",
|
666 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_1\n"
|
667 |
-
]
|
668 |
-
},
|
669 |
-
{
|
670 |
-
"name": "stderr",
|
671 |
-
"output_type": "stream",
|
672 |
-
"text": [
|
673 |
-
"Epoch 2/10: 100%|██████████| 96/96 [01:34<00:00, 1.01it/s]\n"
|
674 |
-
]
|
675 |
-
},
|
676 |
-
{
|
677 |
-
"name": "stdout",
|
678 |
-
"output_type": "stream",
|
679 |
-
"text": [
|
680 |
-
"Train Loss: 0.6006\n",
|
681 |
-
"Train Accuracy: 0.6597\n"
|
682 |
-
]
|
683 |
-
},
|
684 |
-
{
|
685 |
-
"name": "stderr",
|
686 |
-
"output_type": "stream",
|
687 |
-
"text": [
|
688 |
-
" \r"
|
689 |
-
]
|
690 |
-
},
|
691 |
-
{
|
692 |
-
"name": "stdout",
|
693 |
-
"output_type": "stream",
|
694 |
-
"text": [
|
695 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\best\n",
|
696 |
-
"Validation Loss: 0.4140\n",
|
697 |
-
"Validation Accuracy: 0.8252\n",
|
698 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_2\n"
|
699 |
-
]
|
700 |
-
},
|
701 |
-
{
|
702 |
-
"name": "stderr",
|
703 |
-
"output_type": "stream",
|
704 |
-
"text": [
|
705 |
-
"Epoch 3/10: 100%|██████████| 96/96 [01:31<00:00, 1.05it/s]\n"
|
706 |
-
]
|
707 |
-
},
|
708 |
-
{
|
709 |
-
"name": "stdout",
|
710 |
-
"output_type": "stream",
|
711 |
-
"text": [
|
712 |
-
"Train Loss: 0.3597\n",
|
713 |
-
"Train Accuracy: 0.8469\n"
|
714 |
-
]
|
715 |
-
},
|
716 |
-
{
|
717 |
-
"name": "stderr",
|
718 |
-
"output_type": "stream",
|
719 |
-
"text": [
|
720 |
-
" \r"
|
721 |
-
]
|
722 |
-
},
|
723 |
-
{
|
724 |
-
"name": "stdout",
|
725 |
-
"output_type": "stream",
|
726 |
-
"text": [
|
727 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\best\n",
|
728 |
-
"Validation Loss: 0.3259\n",
|
729 |
-
"Validation Accuracy: 0.8541\n",
|
730 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_3\n"
|
731 |
-
]
|
732 |
-
},
|
733 |
-
{
|
734 |
-
"name": "stderr",
|
735 |
-
"output_type": "stream",
|
736 |
-
"text": [
|
737 |
-
"Epoch 4/10: 100%|██████████| 96/96 [01:00<00:00, 1.58it/s]\n"
|
738 |
-
]
|
739 |
-
},
|
740 |
-
{
|
741 |
-
"name": "stdout",
|
742 |
-
"output_type": "stream",
|
743 |
-
"text": [
|
744 |
-
"Train Loss: 0.2143\n",
|
745 |
-
"Train Accuracy: 0.9205\n"
|
746 |
-
]
|
747 |
-
},
|
748 |
-
{
|
749 |
-
"name": "stderr",
|
750 |
-
"output_type": "stream",
|
751 |
-
"text": [
|
752 |
-
" \r"
|
753 |
-
]
|
754 |
-
},
|
755 |
-
{
|
756 |
-
"name": "stdout",
|
757 |
-
"output_type": "stream",
|
758 |
-
"text": [
|
759 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\best\n",
|
760 |
-
"Validation Loss: 0.2619\n",
|
761 |
-
"Validation Accuracy: 0.8988\n",
|
762 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_4\n"
|
763 |
-
]
|
764 |
-
},
|
765 |
-
{
|
766 |
-
"name": "stderr",
|
767 |
-
"output_type": "stream",
|
768 |
-
"text": [
|
769 |
-
"Epoch 5/10: 100%|██████████| 96/96 [01:24<00:00, 1.13it/s]\n"
|
770 |
-
]
|
771 |
-
},
|
772 |
-
{
|
773 |
-
"name": "stdout",
|
774 |
-
"output_type": "stream",
|
775 |
-
"text": [
|
776 |
-
"Train Loss: 0.1113\n",
|
777 |
-
"Train Accuracy: 0.9573\n"
|
778 |
-
]
|
779 |
-
},
|
780 |
-
{
|
781 |
-
"name": "stderr",
|
782 |
-
"output_type": "stream",
|
783 |
-
"text": [
|
784 |
-
" \r"
|
785 |
-
]
|
786 |
-
},
|
787 |
-
{
|
788 |
-
"name": "stdout",
|
789 |
-
"output_type": "stream",
|
790 |
-
"text": [
|
791 |
-
"Validation Loss: 0.4198\n",
|
792 |
-
"Validation Accuracy: 0.8555\n",
|
793 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_5\n"
|
794 |
-
]
|
795 |
-
},
|
796 |
-
{
|
797 |
-
"name": "stderr",
|
798 |
-
"output_type": "stream",
|
799 |
-
"text": [
|
800 |
-
"Epoch 6/10: 100%|██████████| 96/96 [01:01<00:00, 1.56it/s]\n"
|
801 |
-
]
|
802 |
-
},
|
803 |
-
{
|
804 |
-
"name": "stdout",
|
805 |
-
"output_type": "stream",
|
806 |
-
"text": [
|
807 |
-
"Train Loss: 0.0643\n",
|
808 |
-
"Train Accuracy: 0.9770\n"
|
809 |
-
]
|
810 |
-
},
|
811 |
-
{
|
812 |
-
"name": "stderr",
|
813 |
-
"output_type": "stream",
|
814 |
-
"text": [
|
815 |
-
" \r"
|
816 |
-
]
|
817 |
-
},
|
818 |
-
{
|
819 |
-
"name": "stdout",
|
820 |
-
"output_type": "stream",
|
821 |
-
"text": [
|
822 |
-
"Validation Loss: 0.3937\n",
|
823 |
-
"Validation Accuracy: 0.8725\n",
|
824 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_6\n"
|
825 |
-
]
|
826 |
-
},
|
827 |
-
{
|
828 |
-
"name": "stderr",
|
829 |
-
"output_type": "stream",
|
830 |
-
"text": [
|
831 |
-
"Epoch 7/10: 100%|██████████| 96/96 [01:01<00:00, 1.57it/s]\n"
|
832 |
-
]
|
833 |
-
},
|
834 |
-
{
|
835 |
-
"name": "stdout",
|
836 |
-
"output_type": "stream",
|
837 |
-
"text": [
|
838 |
-
"Train Loss: 0.0294\n",
|
839 |
-
"Train Accuracy: 0.9915\n"
|
840 |
-
]
|
841 |
-
},
|
842 |
-
{
|
843 |
-
"name": "stderr",
|
844 |
-
"output_type": "stream",
|
845 |
-
"text": [
|
846 |
-
" \r"
|
847 |
-
]
|
848 |
-
},
|
849 |
-
{
|
850 |
-
"name": "stdout",
|
851 |
-
"output_type": "stream",
|
852 |
-
"text": [
|
853 |
-
"Validation Loss: 0.4704\n",
|
854 |
-
"Validation Accuracy: 0.8725\n",
|
855 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_7\n"
|
856 |
-
]
|
857 |
-
},
|
858 |
-
{
|
859 |
-
"name": "stderr",
|
860 |
-
"output_type": "stream",
|
861 |
-
"text": [
|
862 |
-
"Epoch 8/10: 100%|██████████| 96/96 [01:01<00:00, 1.56it/s]\n"
|
863 |
-
]
|
864 |
-
},
|
865 |
-
{
|
866 |
-
"name": "stdout",
|
867 |
-
"output_type": "stream",
|
868 |
-
"text": [
|
869 |
-
"Train Loss: 0.0128\n",
|
870 |
-
"Train Accuracy: 0.9970\n"
|
871 |
-
]
|
872 |
-
},
|
873 |
-
{
|
874 |
-
"name": "stderr",
|
875 |
-
"output_type": "stream",
|
876 |
-
"text": [
|
877 |
-
" \r"
|
878 |
-
]
|
879 |
-
},
|
880 |
-
{
|
881 |
-
"name": "stdout",
|
882 |
-
"output_type": "stream",
|
883 |
-
"text": [
|
884 |
-
"Validation Loss: 0.5717\n",
|
885 |
-
"Validation Accuracy: 0.8633\n",
|
886 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_8\n"
|
887 |
-
]
|
888 |
-
},
|
889 |
-
{
|
890 |
-
"name": "stderr",
|
891 |
-
"output_type": "stream",
|
892 |
-
"text": [
|
893 |
-
"Epoch 9/10: 100%|██████████| 96/96 [01:02<00:00, 1.54it/s]\n"
|
894 |
-
]
|
895 |
-
},
|
896 |
-
{
|
897 |
-
"name": "stdout",
|
898 |
-
"output_type": "stream",
|
899 |
-
"text": [
|
900 |
-
"Train Loss: 0.0088\n",
|
901 |
-
"Train Accuracy: 0.9970\n"
|
902 |
-
]
|
903 |
-
},
|
904 |
-
{
|
905 |
-
"name": "stderr",
|
906 |
-
"output_type": "stream",
|
907 |
-
"text": [
|
908 |
-
" \r"
|
909 |
-
]
|
910 |
-
},
|
911 |
-
{
|
912 |
-
"name": "stdout",
|
913 |
-
"output_type": "stream",
|
914 |
-
"text": [
|
915 |
-
"Validation Loss: 0.5458\n",
|
916 |
-
"Validation Accuracy: 0.8739\n",
|
917 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_9\n"
|
918 |
-
]
|
919 |
-
},
|
920 |
-
{
|
921 |
-
"name": "stderr",
|
922 |
-
"output_type": "stream",
|
923 |
-
"text": [
|
924 |
-
"Epoch 10/10: 100%|██████████| 96/96 [01:06<00:00, 1.45it/s]\n"
|
925 |
-
]
|
926 |
-
},
|
927 |
-
{
|
928 |
-
"name": "stdout",
|
929 |
-
"output_type": "stream",
|
930 |
-
"text": [
|
931 |
-
"Train Loss: 0.0056\n",
|
932 |
-
"Train Accuracy: 0.9984\n"
|
933 |
-
]
|
934 |
-
},
|
935 |
-
{
|
936 |
-
"name": "stderr",
|
937 |
-
"output_type": "stream",
|
938 |
-
"text": [
|
939 |
-
" \r"
|
940 |
-
]
|
941 |
-
},
|
942 |
-
{
|
943 |
-
"name": "stdout",
|
944 |
-
"output_type": "stream",
|
945 |
-
"text": [
|
946 |
-
"Validation Loss: 0.4930\n",
|
947 |
-
"Validation Accuracy: 0.8804\n",
|
948 |
-
"Checkpoint saved at ./exp/fox_nbc/checkpoints\\checkpoint_epoch_10\n",
|
949 |
-
"Final model saved at ./exp/fox_nbc/checkpoints\n"
|
950 |
-
]
|
951 |
-
}
|
952 |
-
],
|
953 |
-
"execution_count": 19
|
954 |
-
},
|
955 |
-
{
|
956 |
-
"metadata": {},
|
957 |
-
"cell_type": "markdown",
|
958 |
-
"source": "## Evaluate Model",
|
959 |
-
"id": "4af000263dd99bca"
|
960 |
-
},
|
961 |
-
{
|
962 |
-
"metadata": {
|
963 |
-
"ExecuteTime": {
|
964 |
-
"end_time": "2024-12-16T18:50:16.035455Z",
|
965 |
-
"start_time": "2024-12-16T18:50:02.434452Z"
|
966 |
-
}
|
967 |
-
},
|
968 |
-
"cell_type": "code",
|
969 |
-
"source": [
|
970 |
-
"from transformers import AutoConfig, AutoModel\n",
|
971 |
-
"from sklearn.metrics import accuracy_score, classification_report\n",
|
972 |
-
"def load_last_checkpoint(checkpoint_dir):\n",
|
973 |
-
" # Find all checkpoints in the directory\n",
|
974 |
-
" checkpoints = [f for f in os.listdir(checkpoint_dir) if f.startswith(\"checkpoint_epoch_\")]\n",
|
975 |
-
" if not checkpoints:\n",
|
976 |
-
" raise FileNotFoundError(f\"No checkpoints found in {checkpoint_dir}!\")\n",
|
977 |
-
" # Sort checkpoints by epoch number\n",
|
978 |
-
" checkpoints.sort(key=lambda x: int(x.split(\"_\")[-1]))\n",
|
979 |
-
"\n",
|
980 |
-
" # Load the last checkpoint\n",
|
981 |
-
" last_checkpoint = os.path.join(checkpoint_dir, checkpoints[-1])\n",
|
982 |
-
" # print(f\"Loading checkpoint from {last_checkpoint}\")\n",
|
983 |
-
" # Load the best checkpoint\n",
|
984 |
-
" if os.path.join(checkpoint_dir, \"best\") is not None:\n",
|
985 |
-
" last_checkpoint = os.path.join(checkpoint_dir, \"best\")\n",
|
986 |
-
" print(f\"Loading checkpoint from {last_checkpoint}\")\n",
|
987 |
-
" # Load model and config\n",
|
988 |
-
" config = AutoConfig.from_pretrained(last_checkpoint)\n",
|
989 |
-
" model = AutoModel.from_pretrained(last_checkpoint, config=config)\n",
|
990 |
-
" return model\n",
|
991 |
-
"\n",
|
992 |
-
"# Step 1: Define paths and setup\n",
|
993 |
-
"checkpoint_dir = os.path.join(config.base_exp_dir, \"checkpoints\") # Directory where checkpoints are stored\n",
|
994 |
-
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
995 |
-
"model = load_last_checkpoint(checkpoint_dir)\n",
|
996 |
-
"model.to(device)\n",
|
997 |
-
"\n",
|
998 |
-
"# criterion = torch.nn.BCEWithLogitsLoss()\n",
|
999 |
-
"\n",
|
1000 |
-
"criterion = torch.nn.CrossEntropyLoss()\n",
|
1001 |
-
"\n",
|
1002 |
-
"def evaluate_model(model, val_loader, criterion, device=\"cuda\"):\n",
|
1003 |
-
" model.eval()\n",
|
1004 |
-
" val_loss = 0.0\n",
|
1005 |
-
" correct = 0\n",
|
1006 |
-
" total = 0\n",
|
1007 |
-
" all_preds = []\n",
|
1008 |
-
" all_labels = []\n",
|
1009 |
-
" with torch.no_grad():\n",
|
1010 |
-
" for batch_inputs, labels in tqdm(val_loader, desc=\"Testing\", leave=False):\n",
|
1011 |
-
" freq_inputs = batch_inputs[\"freq_inputs\"].to(device)\n",
|
1012 |
-
" seq_inputs = batch_inputs[\"seq_inputs\"].to(device)\n",
|
1013 |
-
" pos_inputs = batch_inputs[\"pos_inputs\"].to(device)\n",
|
1014 |
-
" labels = labels.to(device)\n",
|
1015 |
-
"\n",
|
1016 |
-
" preds= model({\"freq_inputs\": freq_inputs, \"seq_inputs\": seq_inputs, \"pos_inputs\": pos_inputs})\n",
|
1017 |
-
" loss = criterion(preds, labels)\n",
|
1018 |
-
" _, preds = torch.max(preds, dim=1)\n",
|
1019 |
-
" # preds = (torch.sigmoid(preds) > 0.5).float()\n",
|
1020 |
-
" val_loss += loss.item()\n",
|
1021 |
-
" total += labels.size(0)\n",
|
1022 |
-
" # preds = (torch.sigmoid(preds) > 0.5).int()\n",
|
1023 |
-
" correct += (preds == labels).sum().item()\n",
|
1024 |
-
" all_preds.extend(preds.cpu().numpy())\n",
|
1025 |
-
" all_labels.extend(labels.cpu().numpy())\n",
|
1026 |
-
"\n",
|
1027 |
-
" return accuracy_score(all_labels, all_preds), classification_report(all_labels, all_preds)\n",
|
1028 |
-
"\n",
|
1029 |
-
"\n",
|
1030 |
-
"accuracy, report = evaluate_model(model, test_loader, criterion)\n",
|
1031 |
-
"print(f\"Accuracy: {accuracy:.4f}\")\n",
|
1032 |
-
"print(report)\n"
|
1033 |
-
],
|
1034 |
-
"id": "b75d2dc8a300cdf6",
|
1035 |
-
"outputs": [
|
1036 |
-
{
|
1037 |
-
"name": "stderr",
|
1038 |
-
"output_type": "stream",
|
1039 |
-
"text": [
|
1040 |
-
"Some weights of RobertaModel were not initialized from the model checkpoint at roberta-base and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
|
1041 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1042 |
-
]
|
1043 |
-
},
|
1044 |
-
{
|
1045 |
-
"name": "stdout",
|
1046 |
-
"output_type": "stream",
|
1047 |
-
"text": [
|
1048 |
-
"Loading checkpoint from ./exp/fox_nbc/checkpoints\\best\n"
|
1049 |
-
]
|
1050 |
-
},
|
1051 |
-
{
|
1052 |
-
"name": "stderr",
|
1053 |
-
"output_type": "stream",
|
1054 |
-
"text": [
|
1055 |
-
"Some weights of the model checkpoint at ./exp/fox_nbc/checkpoints\\best were not used when initializing CustomModel: ['cls.lin0.parametrizations.weight.original0', 'cls.lin0.parametrizations.weight.original1', 'cls.lin1.parametrizations.weight.original0', 'cls.lin1.parametrizations.weight.original1', 'cls.lin2.parametrizations.weight.original0', 'cls.lin2.parametrizations.weight.original1', 'freq.lin0.parametrizations.weight.original0', 'freq.lin0.parametrizations.weight.original1', 'freq.lin1.parametrizations.weight.original0', 'freq.lin1.parametrizations.weight.original1', 'freq.lin2.parametrizations.weight.original0', 'freq.lin2.parametrizations.weight.original1', 'pos.lin0.parametrizations.weight.original0', 'pos.lin0.parametrizations.weight.original1', 'pos.lin1.parametrizations.weight.original0', 'pos.lin1.parametrizations.weight.original1', 'pos.lin2.parametrizations.weight.original0', 'pos.lin2.parametrizations.weight.original1']\n",
|
1056 |
-
"- This IS expected if you are initializing CustomModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
1057 |
-
"- This IS NOT expected if you are initializing CustomModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
1058 |
-
"Some weights of CustomModel were not initialized from the model checkpoint at ./exp/fox_nbc/checkpoints\\best and are newly initialized: ['cls.lin0.weight_g', 'cls.lin0.weight_v', 'cls.lin1.weight_g', 'cls.lin1.weight_v', 'cls.lin2.weight_g', 'cls.lin2.weight_v', 'freq.lin0.weight_g', 'freq.lin0.weight_v', 'freq.lin1.weight_g', 'freq.lin1.weight_v', 'freq.lin2.weight_g', 'freq.lin2.weight_v', 'pos.lin0.weight_g', 'pos.lin0.weight_v', 'pos.lin1.weight_g', 'pos.lin1.weight_v', 'pos.lin2.weight_g', 'pos.lin2.weight_v']\n",
|
1059 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
1060 |
-
" "
|
1061 |
-
]
|
1062 |
-
},
|
1063 |
-
{
|
1064 |
-
"name": "stdout",
|
1065 |
-
"output_type": "stream",
|
1066 |
-
"text": [
|
1067 |
-
"Accuracy: 0.8988\n",
|
1068 |
-
" precision recall f1-score support\n",
|
1069 |
-
"\n",
|
1070 |
-
" 0 0.90 0.88 0.89 356\n",
|
1071 |
-
" 1 0.90 0.91 0.91 405\n",
|
1072 |
-
"\n",
|
1073 |
-
" accuracy 0.90 761\n",
|
1074 |
-
" macro avg 0.90 0.90 0.90 761\n",
|
1075 |
-
"weighted avg 0.90 0.90 0.90 761\n",
|
1076 |
-
"\n"
|
1077 |
-
]
|
1078 |
-
},
|
1079 |
-
{
|
1080 |
-
"name": "stderr",
|
1081 |
-
"output_type": "stream",
|
1082 |
-
"text": [
|
1083 |
-
"\r"
|
1084 |
-
]
|
1085 |
-
}
|
1086 |
-
],
|
1087 |
-
"execution_count": 21
|
1088 |
-
},
|
1089 |
-
{
|
1090 |
-
"metadata": {},
|
1091 |
-
"cell_type": "markdown",
|
1092 |
-
"source": "# Part 3. Pushing the Model to the Hugging Face",
|
1093 |
-
"id": "d2ffeb383ea00beb"
|
1094 |
-
},
|
1095 |
-
{
|
1096 |
-
"metadata": {
|
1097 |
-
"ExecuteTime": {
|
1098 |
-
"end_time": "2024-12-16T18:50:47.965853Z",
|
1099 |
-
"start_time": "2024-12-16T18:50:23.635567Z"
|
1100 |
-
}
|
1101 |
-
},
|
1102 |
-
"cell_type": "code",
|
1103 |
-
"source": "model.push_model(REPO_NAME)",
|
1104 |
-
"id": "f55c22b0a1b2a66b",
|
1105 |
-
"outputs": [
|
1106 |
-
{
|
1107 |
-
"data": {
|
1108 |
-
"text/plain": [
|
1109 |
-
"README.md: 0%| | 0.00/839 [00:00<?, ?B/s]"
|
1110 |
-
],
|
1111 |
-
"application/vnd.jupyter.widget-view+json": {
|
1112 |
-
"version_major": 2,
|
1113 |
-
"version_minor": 0,
|
1114 |
-
"model_id": "3258d736d65a4c36b524011271415c56"
|
1115 |
-
}
|
1116 |
-
},
|
1117 |
-
"metadata": {},
|
1118 |
-
"output_type": "display_data"
|
1119 |
-
},
|
1120 |
-
{
|
1121 |
-
"name": "stderr",
|
1122 |
-
"output_type": "stream",
|
1123 |
-
"text": [
|
1124 |
-
"C:\\Users\\swall\\anaconda3\\envs\\newsCLS\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\swall\\.cache\\huggingface\\hub\\models--CISProject--News-Headline-Classifier-Notebook. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
1125 |
-
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
1126 |
-
" warnings.warn(message)\n",
|
1127 |
-
"Repo card metadata block was not found. Setting CardData to empty.\n"
|
1128 |
-
]
|
1129 |
-
},
|
1130 |
-
{
|
1131 |
-
"data": {
|
1132 |
-
"text/plain": [
|
1133 |
-
"model.safetensors: 0%| | 0.00/518M [00:00<?, ?B/s]"
|
1134 |
-
],
|
1135 |
-
"application/vnd.jupyter.widget-view+json": {
|
1136 |
-
"version_major": 2,
|
1137 |
-
"version_minor": 0,
|
1138 |
-
"model_id": "bf9fd6651886433489d5059f9a83b831"
|
1139 |
-
}
|
1140 |
-
},
|
1141 |
-
"metadata": {},
|
1142 |
-
"output_type": "display_data"
|
1143 |
-
}
|
1144 |
-
],
|
1145 |
-
"execution_count": 22
|
1146 |
-
},
|
1147 |
-
{
|
1148 |
-
"metadata": {},
|
1149 |
-
"cell_type": "markdown",
|
1150 |
-
"source": "### NOTE: You need to ensure that your Hugging Face token has both read and write access to your repository and Hugging Face organization.",
|
1151 |
-
"id": "3826c0b6195a8fd5"
|
1152 |
-
},
|
1153 |
-
{
|
1154 |
-
"metadata": {
|
1155 |
-
"ExecuteTime": {
|
1156 |
-
"end_time": "2024-12-16T18:51:38.723144Z",
|
1157 |
-
"start_time": "2024-12-16T18:51:24.496422Z"
|
1158 |
-
}
|
1159 |
-
},
|
1160 |
-
"cell_type": "code",
|
1161 |
-
"source": [
|
1162 |
-
"# Load model directly\n",
|
1163 |
-
"from transformers import AutoModel, AutoConfig\n",
|
1164 |
-
"config = AutoConfig.from_pretrained(\"CISProject/News-Headline-Classifier-Notebook\")\n",
|
1165 |
-
"model = AutoModel.from_pretrained(\"CISProject/News-Headline-Classifier-Notebook\",config = config)"
|
1166 |
-
],
|
1167 |
-
"id": "33a0ca269c24d700",
|
1168 |
-
"outputs": [
|
1169 |
-
{
|
1170 |
-
"data": {
|
1171 |
-
"text/plain": [
|
1172 |
-
"config.json: 0%| | 0.00/1.08k [00:00<?, ?B/s]"
|
1173 |
-
],
|
1174 |
-
"application/vnd.jupyter.widget-view+json": {
|
1175 |
-
"version_major": 2,
|
1176 |
-
"version_minor": 0,
|
1177 |
-
"model_id": "ee3167049b5942acacc9eaab7cbb0a35"
|
1178 |
-
}
|
1179 |
-
},
|
1180 |
-
"metadata": {},
|
1181 |
-
"output_type": "display_data"
|
1182 |
-
},
|
1183 |
-
{
|
1184 |
-
"data": {
|
1185 |
-
"text/plain": [
|
1186 |
-
"model.safetensors: 0%| | 0.00/518M [00:00<?, ?B/s]"
|
1187 |
-
],
|
1188 |
-
"application/vnd.jupyter.widget-view+json": {
|
1189 |
-
"version_major": 2,
|
1190 |
-
"version_minor": 0,
|
1191 |
-
"model_id": "456b7f100f9342c49fd9f08d2b24e1d8"
|
1192 |
-
}
|
1193 |
-
},
|
1194 |
-
"metadata": {},
|
1195 |
-
"output_type": "display_data"
|
1196 |
-
},
|
1197 |
-
{
|
1198 |
-
"name": "stderr",
|
1199 |
-
"output_type": "stream",
|
1200 |
-
"text": [
|
1201 |
-
"C:\\Users\\swall\\anaconda3\\envs\\newsCLS\\Lib\\site-packages\\torch\\nn\\utils\\weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
|
1202 |
-
" WeightNorm.apply(module, name, dim)\n",
|
1203 |
-
"Some weights of RobertaModel were not initialized from the model checkpoint at roberta-base and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
|
1204 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
1205 |
-
"Some weights of the model checkpoint at CISProject/News-Headline-Classifier-Notebook were not used when initializing CustomModel: ['cls.lin0.parametrizations.weight.original0', 'cls.lin0.parametrizations.weight.original1', 'cls.lin1.parametrizations.weight.original0', 'cls.lin1.parametrizations.weight.original1', 'cls.lin2.parametrizations.weight.original0', 'cls.lin2.parametrizations.weight.original1', 'freq.lin0.parametrizations.weight.original0', 'freq.lin0.parametrizations.weight.original1', 'freq.lin1.parametrizations.weight.original0', 'freq.lin1.parametrizations.weight.original1', 'freq.lin2.parametrizations.weight.original0', 'freq.lin2.parametrizations.weight.original1', 'pos.lin0.parametrizations.weight.original0', 'pos.lin0.parametrizations.weight.original1', 'pos.lin1.parametrizations.weight.original0', 'pos.lin1.parametrizations.weight.original1', 'pos.lin2.parametrizations.weight.original0', 'pos.lin2.parametrizations.weight.original1']\n",
|
1206 |
-
"- This IS expected if you are initializing CustomModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
1207 |
-
"- This IS NOT expected if you are initializing CustomModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
1208 |
-
"Some weights of CustomModel were not initialized from the model checkpoint at CISProject/News-Headline-Classifier-Notebook and are newly initialized: ['cls.lin0.weight_g', 'cls.lin0.weight_v', 'cls.lin1.weight_g', 'cls.lin1.weight_v', 'cls.lin2.weight_g', 'cls.lin2.weight_v', 'freq.lin0.weight_g', 'freq.lin0.weight_v', 'freq.lin1.weight_g', 'freq.lin1.weight_v', 'freq.lin2.weight_g', 'freq.lin2.weight_v', 'pos.lin0.weight_g', 'pos.lin0.weight_v', 'pos.lin1.weight_g', 'pos.lin1.weight_v', 'pos.lin2.weight_g', 'pos.lin2.weight_v']\n",
|
1209 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
1210 |
-
]
|
1211 |
-
}
|
1212 |
-
],
|
1213 |
-
"execution_count": 23
|
1214 |
-
},
|
1215 |
-
{
|
1216 |
-
"metadata": {
|
1217 |
-
"ExecuteTime": {
|
1218 |
-
"end_time": "2024-12-16T18:51:53.997442Z",
|
1219 |
-
"start_time": "2024-12-16T18:51:40.978026Z"
|
1220 |
-
}
|
1221 |
-
},
|
1222 |
-
"cell_type": "code",
|
1223 |
-
"source": [
|
1224 |
-
"from transformers import AutoConfig, AutoModel\n",
|
1225 |
-
"from sklearn.metrics import accuracy_score, classification_report\n",
|
1226 |
-
"\n",
|
1227 |
-
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
1228 |
-
"model.to(device)\n",
|
1229 |
-
"\n",
|
1230 |
-
"#criterion = torch.nn.BCEWithLogitsLoss()\n",
|
1231 |
-
"\n",
|
1232 |
-
"criterion = torch.nn.CrossEntropyLoss()\n",
|
1233 |
-
"def evaluate_model(model, val_loader, criterion, device=\"cuda\"):\n",
|
1234 |
-
" model.eval()\n",
|
1235 |
-
" val_loss = 0.0\n",
|
1236 |
-
" correct = 0\n",
|
1237 |
-
" total = 0\n",
|
1238 |
-
" all_preds = []\n",
|
1239 |
-
" all_labels = []\n",
|
1240 |
-
" with torch.no_grad():\n",
|
1241 |
-
" for batch_inputs, labels in tqdm(val_loader, desc=\"Testing\", leave=False):\n",
|
1242 |
-
" freq_inputs = batch_inputs[\"freq_inputs\"].to(device)\n",
|
1243 |
-
" seq_inputs = batch_inputs[\"seq_inputs\"].to(device)\n",
|
1244 |
-
" pos_inputs = batch_inputs[\"pos_inputs\"].to(device)\n",
|
1245 |
-
" labels = labels.to(device)\n",
|
1246 |
-
"\n",
|
1247 |
-
" preds = model({\"freq_inputs\": freq_inputs, \"seq_inputs\": seq_inputs, \"pos_inputs\": pos_inputs})\n",
|
1248 |
-
" loss = criterion(preds, labels)\n",
|
1249 |
-
" _, preds = torch.max(preds, dim=1)\n",
|
1250 |
-
" # preds = (torch.sigmoid(preds) > 0.5).float()\n",
|
1251 |
-
" val_loss += loss.item()\n",
|
1252 |
-
" total += labels.size(0)\n",
|
1253 |
-
" correct += (preds == labels).sum().item()\n",
|
1254 |
-
" all_preds.extend(preds.cpu().numpy())\n",
|
1255 |
-
" all_labels.extend(labels.cpu().numpy())\n",
|
1256 |
-
"\n",
|
1257 |
-
" return accuracy_score(all_labels, all_preds), classification_report(all_labels, all_preds)\n",
|
1258 |
-
"\n",
|
1259 |
-
"\n",
|
1260 |
-
"accuracy, report = evaluate_model(model, test_loader, criterion)\n",
|
1261 |
-
"print(f\"Accuracy: {accuracy:.4f}\")\n",
|
1262 |
-
"print(report)\n"
|
1263 |
-
],
|
1264 |
-
"id": "cc313b4396f87690",
|
1265 |
-
"outputs": [
|
1266 |
-
{
|
1267 |
-
"name": "stderr",
|
1268 |
-
"output_type": "stream",
|
1269 |
-
"text": [
|
1270 |
-
" "
|
1271 |
-
]
|
1272 |
-
},
|
1273 |
-
{
|
1274 |
-
"name": "stdout",
|
1275 |
-
"output_type": "stream",
|
1276 |
-
"text": [
|
1277 |
-
"Accuracy: 0.8988\n",
|
1278 |
-
" precision recall f1-score support\n",
|
1279 |
-
"\n",
|
1280 |
-
" 0 0.90 0.88 0.89 356\n",
|
1281 |
-
" 1 0.90 0.91 0.91 405\n",
|
1282 |
-
"\n",
|
1283 |
-
" accuracy 0.90 761\n",
|
1284 |
-
" macro avg 0.90 0.90 0.90 761\n",
|
1285 |
-
"weighted avg 0.90 0.90 0.90 761\n",
|
1286 |
-
"\n"
|
1287 |
-
]
|
1288 |
-
},
|
1289 |
-
{
|
1290 |
-
"name": "stderr",
|
1291 |
-
"output_type": "stream",
|
1292 |
-
"text": [
|
1293 |
-
"\r"
|
1294 |
-
]
|
1295 |
-
}
|
1296 |
-
],
|
1297 |
-
"execution_count": 24
|
1298 |
-
}
|
1299 |
-
],
|
1300 |
-
"metadata": {
|
1301 |
-
"kernelspec": {
|
1302 |
-
"name": "python3",
|
1303 |
-
"language": "python",
|
1304 |
-
"display_name": "Python 3 (ipykernel)"
|
1305 |
-
}
|
1306 |
-
},
|
1307 |
-
"nbformat": 5,
|
1308 |
-
"nbformat_minor": 9
|
1309 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|