File size: 2,782 Bytes
7e7e661
 
6bed34b
 
7e7e661
 
 
 
 
 
 
6bed34b
ef5298b
7e7e661
 
 
 
 
6bed34b
7e7e661
1e124f7
7e7e661
1e124f7
 
7e7e661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5298b
7e7e661
 
 
 
 
 
 
 
ef5298b
7e7e661
 
 
 
ef5298b
 
1e124f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e7e661
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Drone test En - Siang Yi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Drone test En - Siang Yi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the drone command test3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6268
- Wer: 8.3333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.86          | 10.0  | 10   | 0.6997          | 25.0    |
| 0.0773        | 20.0  | 20   | 0.1492          | 16.6667 |
| 0.0062        | 30.0  | 30   | 0.5699          | 8.3333  |
| 0.0028        | 40.0  | 40   | 0.5715          | 8.3333  |
| 0.0006        | 50.0  | 50   | 0.5512          | 8.3333  |
| 0.0228        | 60.0  | 60   | 0.6065          | 8.3333  |
| 0.0           | 70.0  | 70   | 0.5899          | 8.3333  |
| 0.0001        | 80.0  | 80   | 0.6822          | 8.3333  |
| 0.0           | 90.0  | 90   | 0.6161          | 8.3333  |
| 0.0           | 100.0 | 100  | 0.6305          | 8.3333  |
| 0.0           | 110.0 | 110  | 0.6301          | 8.3333  |
| 0.0           | 120.0 | 120  | 0.6296          | 8.3333  |
| 0.0           | 130.0 | 130  | 0.6284          | 8.3333  |
| 0.0           | 140.0 | 140  | 0.6283          | 8.3333  |
| 0.0           | 150.0 | 150  | 0.6281          | 8.3333  |
| 0.0           | 160.0 | 160  | 0.6270          | 8.3333  |
| 0.0           | 170.0 | 170  | 0.6280          | 8.3333  |
| 0.0           | 180.0 | 180  | 0.6280          | 8.3333  |
| 0.0           | 190.0 | 190  | 0.6269          | 8.3333  |
| 0.0           | 200.0 | 200  | 0.6268          | 8.3333  |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0