File size: 8,844 Bytes
1060621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import argparse
from mmengine import Config
def create_deeplabv3plus_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
cfg = Config.fromfile(model_config_path)
dataset_cfg = Config.fromfile(dataset_config_path)
cfg.merge_from_dict(dataset_cfg)
# Set crop size
cfg.crop_size = (512, 512)
cfg.model.data_preprocessor.size = cfg.crop_size
# Configure normalization
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.backbone.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.norm_cfg = cfg.norm_cfg
cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.num_classes = num_class
cfg.model.auxiliary_head.num_classes = num_class
cfg.train_dataloader.batch_size = batch_size
# Set training configurations
cfg.train_cfg.max_iters = max_iters
cfg.train_cfg.val_interval = val_interval
cfg.default_hooks.logger.interval = 100
cfg.default_hooks.checkpoint.interval = 2500
cfg.default_hooks.checkpoint.max_keep_ckpts = 1
cfg.default_hooks.checkpoint.save_best = 'mIoU'
cfg['randomness'] = dict(seed=0)
# Set work directory
cfg.save_dir = save_dir
name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
cfg.work_dir = os.path.join(work_dir,name)
os.makedirs(cfg.work_dir, exist_ok=True)
save_config_file = os.path.join(save_dir, f"{name}.py")
cfg.dump(save_config_file)
print(f"Configuration saved to: {save_config_file}")
def create_knet_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
cfg = Config.fromfile(model_config_path)
dataset_cfg = Config.fromfile(dataset_config_path)
cfg.merge_from_dict(dataset_cfg)
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.data_preprocessor.size = cfg.crop_size
cfg.model.decode_head.kernel_generate_head.num_classes = num_class
cfg.model.auxiliary_head.num_classes = num_class
cfg.train_dataloader.batch_size = batch_size
cfg.work_dir = work_dir
cfg.train_cfg.max_iters = max_iters
cfg.train_cfg.val_interval = val_interval
cfg.default_hooks.logger.interval = 100
cfg.default_hooks.checkpoint.interval = 2500
cfg.default_hooks.checkpoint.max_keep_ckpts = 1
cfg.default_hooks.checkpoint.save_best = 'mIoU'
cfg['randomness'] = dict(seed=0)
cfg.save_dir = save_dir
name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
cfg.work_dir = os.path.join(work_dir, name)
os.makedirs(cfg.work_dir, exist_ok=True)
save_config_file = os.path.join(save_dir, f"{name}.py")
cfg.dump(save_config_file)
print(f"Configuration saved to: {save_config_file}")
def create_mask2former_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
cfg = Config.fromfile(model_config_path)
dataset_cfg = Config.fromfile(dataset_config_path)
cfg.merge_from_dict(dataset_cfg)
# Set crop size
cfg.crop_size = (512, 512)
cfg.model.data_preprocessor.size = cfg.crop_size
# Configure normalization
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.decode_head.num_classes = num_class
cfg.model.decode_head.loss_cls.class_weight = [1.0] * num_class + [0.1]
cfg.train_dataloader.batch_size = batch_size
# Set training configurations
cfg.train_cfg.max_iters = max_iters
cfg.train_cfg.val_interval = val_interval
cfg.default_hooks.logger.interval = 100
cfg.default_hooks.checkpoint.interval = 2500
cfg.default_hooks.checkpoint.max_keep_ckpts = 1
cfg.default_hooks.checkpoint.save_best = 'mIoU'
cfg['randomness'] = dict(seed=0)
# Set work directory
cfg.save_dir = save_dir
name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
cfg.work_dir = os.path.join(work_dir,name)
os.makedirs(cfg.work_dir, exist_ok=True)
save_config_file = os.path.join(save_dir, f"{name}.py")
cfg.dump(save_config_file)
print(f"Configuration saved to: {save_config_file}")
def create_segformer_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
cfg = Config.fromfile(model_config_path)
dataset_cfg = Config.fromfile(dataset_config_path)
cfg.merge_from_dict(dataset_cfg)
# Configure normalization
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.data_preprocessor.size = cfg.crop_size
cfg.model.decode_head.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.num_classes = num_class
cfg.train_dataloader.batch_size = batch_size
# Set training configurations
cfg.train_cfg.max_iters = max_iters
cfg.train_cfg.val_interval = val_interval
cfg.default_hooks.logger.interval = 100
cfg.default_hooks.checkpoint.interval = 2500
cfg.default_hooks.checkpoint.max_keep_ckpts = 1
cfg.default_hooks.checkpoint.save_best = 'mIoU'
cfg['randomness'] = dict(seed=0)
# Set work directory
cfg.save_dir = save_dir
name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
cfg.work_dir = os.path.join(work_dir,name)
os.makedirs(cfg.work_dir, exist_ok=True)
save_config_file = os.path.join(save_dir, f"{name}.py")
cfg.dump(save_config_file)
print(f"Configuration saved to: {save_config_file}")
def main():
parser = argparse.ArgumentParser(description='Train configuration setup for different models.')
parser.add_argument('--model_name', type=str, required=True, choices=['deeplabv3plus', 'knet', 'mask2former', 'segformer'],
help='Model name to generate the config for.')
parser.add_argument('-m', '--model_config', type=str, required=True, help="Path to the model config file")
parser.add_argument('-d', '--dataset_config', type=str, required=True, help='Path to the dataset config file.')
parser.add_argument('-c', '--num_class', type=int, required=True, help="Number of classes in the dataset")
parser.add_argument('-w','--work_dir', type=str, required=True, help='Directory to save the train result.')
parser.add_argument('-s', '--save_dir', type=str, required=True, help="Directory to save the generated config file")
parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
parser.add_argument('--max_iters', type=int, default=20000, help='Number of training iterations.')
parser.add_argument('--val_interval', type=int, default=500, help='Interval for validation during training.')
args = parser.parse_args()
if args.model_name == 'deeplabv3plus':
create_deeplabv3plus_config(
model_config_path=args.model_config,
dataset_config_path=args.dataset_config,
num_class=args.num_class,
work_dir=args.work_dir,
save_dir =args.save_dir,
batch_size=args.batch_size,
max_iters=args.max_iters,
val_interval=args.val_interval
)
if args.model_name == 'knet':
create_knet_config(
model_config_path=args.model_config,
dataset_config_path=args.dataset_config,
num_class=args.num_class,
work_dir=args.work_dir,
save_dir =args.save_dir,
batch_size=args.batch_size,
max_iters=args.max_iters,
val_interval=args.val_interval
)
if args.model_name == 'mask2former':
create_mask2former_config(
model_config_path=args.model_config,
dataset_config_path=args.dataset_config,
num_class=args.num_class,
work_dir=args.work_dir,
save_dir =args.save_dir,
batch_size=args.batch_size,
max_iters=args.max_iters,
val_interval=args.val_interval
)
elif args.model_name == 'segformer':
create_segformer_config(
model_config_path=args.model_config,
dataset_config_path=args.dataset_config,
num_class=args.num_class,
work_dir=args.work_dir,
save_dir =args.save_dir,
batch_size=args.batch_size,
max_iters=args.max_iters,
val_interval=args.val_interval
)
if __name__ == '__main__':
main()
|