File size: 8,844 Bytes
1060621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import argparse
from mmengine import Config

def create_deeplabv3plus_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
    cfg = Config.fromfile(model_config_path)
    dataset_cfg = Config.fromfile(dataset_config_path)
    cfg.merge_from_dict(dataset_cfg)
    
    # Set crop size
    cfg.crop_size = (512, 512)
    cfg.model.data_preprocessor.size = cfg.crop_size

      # Configure normalization
    cfg.norm_cfg = dict(type='BN', requires_grad=True)
    cfg.model.backbone.norm_cfg = cfg.norm_cfg
    cfg.model.decode_head.norm_cfg = cfg.norm_cfg
    cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg

    cfg.model.decode_head.num_classes = num_class
    cfg.model.auxiliary_head.num_classes = num_class

    cfg.train_dataloader.batch_size = batch_size
    
    # Set training configurations
    cfg.train_cfg.max_iters = max_iters
    cfg.train_cfg.val_interval = val_interval
    cfg.default_hooks.logger.interval = 100
    cfg.default_hooks.checkpoint.interval = 2500
    cfg.default_hooks.checkpoint.max_keep_ckpts = 1
    cfg.default_hooks.checkpoint.save_best = 'mIoU'

    cfg['randomness'] = dict(seed=0)
    # Set work directory
    cfg.save_dir = save_dir
    name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
    cfg.work_dir = os.path.join(work_dir,name)
    os.makedirs(cfg.work_dir, exist_ok=True)
    save_config_file = os.path.join(save_dir, f"{name}.py")
    cfg.dump(save_config_file)
    print(f"Configuration saved to: {save_config_file}")

def create_knet_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
   
    cfg = Config.fromfile(model_config_path)
    dataset_cfg = Config.fromfile(dataset_config_path)
    
    cfg.merge_from_dict(dataset_cfg)
    
    cfg.norm_cfg = dict(type='BN', requires_grad=True)
    cfg.model.data_preprocessor.size = cfg.crop_size

    cfg.model.decode_head.kernel_generate_head.num_classes = num_class
    cfg.model.auxiliary_head.num_classes = num_class

    cfg.train_dataloader.batch_size = batch_size
    cfg.work_dir = work_dir

    cfg.train_cfg.max_iters = max_iters
    cfg.train_cfg.val_interval = val_interval
    cfg.default_hooks.logger.interval = 100
    cfg.default_hooks.checkpoint.interval = 2500
    cfg.default_hooks.checkpoint.max_keep_ckpts = 1
    cfg.default_hooks.checkpoint.save_best = 'mIoU'

    cfg['randomness'] = dict(seed=0)

    cfg.save_dir = save_dir
    name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
    cfg.work_dir = os.path.join(work_dir, name)
    os.makedirs(cfg.work_dir, exist_ok=True)
    save_config_file = os.path.join(save_dir, f"{name}.py")
    cfg.dump(save_config_file)
    print(f"Configuration saved to: {save_config_file}")

def create_mask2former_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
    cfg = Config.fromfile(model_config_path)
    dataset_cfg = Config.fromfile(dataset_config_path)
    cfg.merge_from_dict(dataset_cfg)
    
    # Set crop size
    cfg.crop_size = (512, 512)
    cfg.model.data_preprocessor.size = cfg.crop_size

      # Configure normalization
    cfg.norm_cfg = dict(type='BN', requires_grad=True)

    cfg.model.decode_head.num_classes = num_class
    cfg.model.decode_head.loss_cls.class_weight = [1.0] * num_class + [0.1]

    cfg.train_dataloader.batch_size = batch_size
    
    # Set training configurations
    cfg.train_cfg.max_iters = max_iters
    cfg.train_cfg.val_interval = val_interval
    cfg.default_hooks.logger.interval = 100
    cfg.default_hooks.checkpoint.interval = 2500
    cfg.default_hooks.checkpoint.max_keep_ckpts = 1
    cfg.default_hooks.checkpoint.save_best = 'mIoU'

    cfg['randomness'] = dict(seed=0)
    # Set work directory
    cfg.save_dir = save_dir
    name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
    cfg.work_dir = os.path.join(work_dir,name)
    os.makedirs(cfg.work_dir, exist_ok=True)
    save_config_file = os.path.join(save_dir, f"{name}.py")
    cfg.dump(save_config_file)
    print(f"Configuration saved to: {save_config_file}")

def create_segformer_config(model_config_path, dataset_config_path, num_class, work_dir, save_dir, batch_size, max_iters, val_interval):
    cfg = Config.fromfile(model_config_path)
    dataset_cfg = Config.fromfile(dataset_config_path)
    cfg.merge_from_dict(dataset_cfg)

      # Configure normalization
    cfg.norm_cfg = dict(type='BN', requires_grad=True)
    cfg.model.data_preprocessor.size = cfg.crop_size
    cfg.model.decode_head.norm_cfg = cfg.norm_cfg

    cfg.model.decode_head.num_classes = num_class

    cfg.train_dataloader.batch_size = batch_size
    
    # Set training configurations
    cfg.train_cfg.max_iters = max_iters
    cfg.train_cfg.val_interval = val_interval
    cfg.default_hooks.logger.interval = 100
    cfg.default_hooks.checkpoint.interval = 2500
    cfg.default_hooks.checkpoint.max_keep_ckpts = 1
    cfg.default_hooks.checkpoint.save_best = 'mIoU'

    cfg['randomness'] = dict(seed=0)
    # Set work directory
    cfg.save_dir = save_dir
    name = os.path.basename(dataset_config_path).split('_')[0] + "_" + os.path.dirname(model_config_path).split(os.sep)[1]
    cfg.work_dir = os.path.join(work_dir,name)
    os.makedirs(cfg.work_dir, exist_ok=True)
    save_config_file = os.path.join(save_dir, f"{name}.py")
    cfg.dump(save_config_file)
    print(f"Configuration saved to: {save_config_file}")

def main():
    parser = argparse.ArgumentParser(description='Train configuration setup for different models.')
    
    parser.add_argument('--model_name', type=str, required=True, choices=['deeplabv3plus', 'knet', 'mask2former', 'segformer'],
                        help='Model name to generate the config for.')
    parser.add_argument('-m', '--model_config', type=str, required=True, help="Path to the model config file")
    parser.add_argument('-d', '--dataset_config', type=str, required=True, help='Path to the dataset config file.')
    parser.add_argument('-c', '--num_class', type=int, required=True, help="Number of classes in the dataset")
    parser.add_argument('-w','--work_dir', type=str, required=True, help='Directory to save the train result.')
    parser.add_argument('-s', '--save_dir', type=str, required=True, help="Directory to save the generated config file")
    parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
    parser.add_argument('--max_iters', type=int, default=20000, help='Number of training iterations.')
    parser.add_argument('--val_interval', type=int, default=500, help='Interval for validation during training.')


    args = parser.parse_args()

    if args.model_name == 'deeplabv3plus':
        create_deeplabv3plus_config(
            model_config_path=args.model_config,
            dataset_config_path=args.dataset_config,
            num_class=args.num_class,
            work_dir=args.work_dir,
            save_dir =args.save_dir,
            batch_size=args.batch_size,
            max_iters=args.max_iters,
            val_interval=args.val_interval
        )
    if args.model_name == 'knet':
        create_knet_config(
            model_config_path=args.model_config,
            dataset_config_path=args.dataset_config,
            num_class=args.num_class,
            work_dir=args.work_dir,
            save_dir =args.save_dir,
            batch_size=args.batch_size,
            max_iters=args.max_iters,
            val_interval=args.val_interval
        )
    if args.model_name == 'mask2former':
            create_mask2former_config(
            model_config_path=args.model_config,
            dataset_config_path=args.dataset_config,
            num_class=args.num_class,
            work_dir=args.work_dir,
            save_dir =args.save_dir,
            batch_size=args.batch_size,
            max_iters=args.max_iters,
            val_interval=args.val_interval
        )
    elif args.model_name == 'segformer':
            create_segformer_config(
            model_config_path=args.model_config,
            dataset_config_path=args.dataset_config,
            num_class=args.num_class,
            work_dir=args.work_dir,
            save_dir =args.save_dir,
            batch_size=args.batch_size,
            max_iters=args.max_iters,
            val_interval=args.val_interval
        )

if __name__ == '__main__':
    main()