CVRPDataset commited on
Commit
2a5baf3
·
verified ·
1 Parent(s): d717fc6

Delete CVRP_configs

Browse files
CVRP_configs/CVRP_DeepLabV3plus.py DELETED
@@ -1,303 +0,0 @@
1
- crop_size = (
2
- 512,
3
- 512,
4
- )
5
- data_preprocessor = dict(
6
- bgr_to_rgb=True,
7
- mean=[
8
- 123.675,
9
- 116.28,
10
- 103.53,
11
- ],
12
- pad_val=0,
13
- seg_pad_val=255,
14
- size=(
15
- 512,
16
- 512,
17
- ),
18
- std=[
19
- 58.395,
20
- 57.12,
21
- 57.375,
22
- ],
23
- type='SegDataPreProcessor')
24
- data_root = 'CVRPDataset/'
25
- dataset_type = 'CVRPDataset'
26
- default_hooks = dict(
27
- checkpoint=dict(
28
- by_epoch=False,
29
- interval=2500,
30
- max_keep_ckpts=1,
31
- save_best='mIoU',
32
- type='CheckpointHook'),
33
- logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
34
- param_scheduler=dict(type='ParamSchedulerHook'),
35
- sampler_seed=dict(type='DistSamplerSeedHook'),
36
- timer=dict(type='IterTimerHook'),
37
- visualization=dict(type='SegVisualizationHook'))
38
- default_scope = 'mmseg'
39
- env_cfg = dict(
40
- cudnn_benchmark=True,
41
- dist_cfg=dict(backend='nccl'),
42
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
43
- img_ratios = [
44
- 0.5,
45
- 0.75,
46
- 1.0,
47
- 1.25,
48
- 1.5,
49
- 1.75,
50
- ]
51
- load_from = None
52
- log_level = 'INFO'
53
- log_processor = dict(by_epoch=False)
54
- model = dict(
55
- auxiliary_head=dict(
56
- align_corners=False,
57
- channels=256,
58
- concat_input=False,
59
- dropout_ratio=0.1,
60
- in_channels=1024,
61
- in_index=2,
62
- loss_decode=dict(
63
- loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
64
- norm_cfg=dict(requires_grad=True, type='BN'),
65
- num_classes=2,
66
- num_convs=1,
67
- type='FCNHead'),
68
- backbone=dict(
69
- contract_dilation=True,
70
- depth=101,
71
- dilations=(
72
- 1,
73
- 1,
74
- 2,
75
- 4,
76
- ),
77
- norm_cfg=dict(requires_grad=True, type='BN'),
78
- norm_eval=False,
79
- num_stages=4,
80
- out_indices=(
81
- 0,
82
- 1,
83
- 2,
84
- 3,
85
- ),
86
- strides=(
87
- 1,
88
- 2,
89
- 1,
90
- 1,
91
- ),
92
- style='pytorch',
93
- type='ResNetV1c'),
94
- data_preprocessor=dict(
95
- bgr_to_rgb=True,
96
- mean=[
97
- 123.675,
98
- 116.28,
99
- 103.53,
100
- ],
101
- pad_val=0,
102
- seg_pad_val=255,
103
- size=(
104
- 512,
105
- 512,
106
- ),
107
- std=[
108
- 58.395,
109
- 57.12,
110
- 57.375,
111
- ],
112
- type='SegDataPreProcessor'),
113
- decode_head=dict(
114
- align_corners=False,
115
- c1_channels=48,
116
- c1_in_channels=256,
117
- channels=512,
118
- dilations=(
119
- 1,
120
- 12,
121
- 24,
122
- 36,
123
- ),
124
- dropout_ratio=0.1,
125
- in_channels=2048,
126
- in_index=3,
127
- loss_decode=dict(
128
- loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
129
- norm_cfg=dict(requires_grad=True, type='BN'),
130
- num_classes=2,
131
- type='DepthwiseSeparableASPPHead'),
132
- pretrained='open-mmlab://resnet101_v1c',
133
- test_cfg=dict(mode='whole'),
134
- train_cfg=dict(),
135
- type='EncoderDecoder')
136
- norm_cfg = dict(requires_grad=True, type='BN')
137
- optim_wrapper = dict(
138
- clip_grad=None,
139
- optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005),
140
- type='OptimWrapper')
141
- optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
142
- param_scheduler = [
143
- dict(
144
- begin=0,
145
- by_epoch=False,
146
- end=160000,
147
- eta_min=0.0001,
148
- power=0.9,
149
- type='PolyLR'),
150
- ]
151
- randomness = dict(seed=0)
152
- resume = False
153
- test_cfg = dict(type='TestLoop')
154
- test_dataloader = dict(
155
- batch_size=1,
156
- dataset=dict(
157
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
158
- data_root='CVRPDataset/',
159
- pipeline=[
160
- dict(type='LoadImageFromFile'),
161
- dict(keep_ratio=True, scale=(
162
- 2048,
163
- 1024,
164
- ), type='Resize'),
165
- dict(type='LoadAnnotations'),
166
- dict(type='PackSegInputs'),
167
- ],
168
- type='CVRPDataset'),
169
- num_workers=4,
170
- persistent_workers=True,
171
- sampler=dict(shuffle=False, type='DefaultSampler'))
172
- test_evaluator = dict(
173
- iou_metrics=[
174
- 'mIoU',
175
- 'mDice',
176
- 'mFscore',
177
- ], type='IoUMetric')
178
- test_pipeline = [
179
- dict(type='LoadImageFromFile'),
180
- dict(keep_ratio=True, scale=(
181
- 2048,
182
- 1024,
183
- ), type='Resize'),
184
- dict(type='LoadAnnotations'),
185
- dict(type='PackSegInputs'),
186
- ]
187
- train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
188
- train_dataloader = dict(
189
- batch_size=4,
190
- dataset=dict(
191
- data_prefix=dict(
192
- img_path='img_dir/train', seg_map_path='ann_dir/train'),
193
- data_root='CVRPDataset/',
194
- pipeline=[
195
- dict(type='LoadImageFromFile'),
196
- dict(type='LoadAnnotations'),
197
- dict(
198
- keep_ratio=True,
199
- ratio_range=(
200
- 0.5,
201
- 2.0,
202
- ),
203
- scale=(
204
- 2048,
205
- 1024,
206
- ),
207
- type='RandomResize'),
208
- dict(
209
- cat_max_ratio=0.75, crop_size=(
210
- 512,
211
- 512,
212
- ), type='RandomCrop'),
213
- dict(prob=0.5, type='RandomFlip'),
214
- dict(type='PhotoMetricDistortion'),
215
- dict(type='PackSegInputs'),
216
- ],
217
- type='CVRPDataset'),
218
- num_workers=2,
219
- persistent_workers=True,
220
- sampler=dict(shuffle=True, type='InfiniteSampler'))
221
- train_pipeline = [
222
- dict(type='LoadImageFromFile'),
223
- dict(type='LoadAnnotations'),
224
- dict(
225
- keep_ratio=True,
226
- ratio_range=(
227
- 0.5,
228
- 2.0,
229
- ),
230
- scale=(
231
- 2048,
232
- 1024,
233
- ),
234
- type='RandomResize'),
235
- dict(cat_max_ratio=0.75, crop_size=(
236
- 512,
237
- 512,
238
- ), type='RandomCrop'),
239
- dict(prob=0.5, type='RandomFlip'),
240
- dict(type='PhotoMetricDistortion'),
241
- dict(type='PackSegInputs'),
242
- ]
243
- tta_model = dict(type='SegTTAModel')
244
- tta_pipeline = [
245
- dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
246
- dict(
247
- transforms=[
248
- [
249
- dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
250
- dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
251
- dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
252
- dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
253
- dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
254
- dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
255
- ],
256
- [
257
- dict(direction='horizontal', prob=0.0, type='RandomFlip'),
258
- dict(direction='horizontal', prob=1.0, type='RandomFlip'),
259
- ],
260
- [
261
- dict(type='LoadAnnotations'),
262
- ],
263
- [
264
- dict(type='PackSegInputs'),
265
- ],
266
- ],
267
- type='TestTimeAug'),
268
- ]
269
- val_cfg = dict(type='ValLoop')
270
- val_dataloader = dict(
271
- batch_size=1,
272
- dataset=dict(
273
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
274
- data_root='CVRPDataset/',
275
- pipeline=[
276
- dict(type='LoadImageFromFile'),
277
- dict(keep_ratio=True, scale=(
278
- 2048,
279
- 1024,
280
- ), type='Resize'),
281
- dict(type='LoadAnnotations'),
282
- dict(type='PackSegInputs'),
283
- ],
284
- type='CVRPDataset'),
285
- num_workers=4,
286
- persistent_workers=True,
287
- sampler=dict(shuffle=False, type='DefaultSampler'))
288
- val_evaluator = dict(
289
- iou_metrics=[
290
- 'mIoU',
291
- 'mDice',
292
- 'mFscore',
293
- ], type='IoUMetric')
294
- vis_backends = [
295
- dict(type='LocalVisBackend'),
296
- ]
297
- visualizer = dict(
298
- name='visualizer',
299
- type='SegLocalVisualizer',
300
- vis_backends=[
301
- dict(type='LocalVisBackend'),
302
- ])
303
- work_dir = './work_dirs/CVRP_deeplabv3plus'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CVRP_configs/CVRP_KNet.py DELETED
@@ -1,404 +0,0 @@
1
- checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth'
2
- conv_kernel_size = 1
3
- crop_size = (
4
- 512,
5
- 512,
6
- )
7
- data_preprocessor = dict(
8
- bgr_to_rgb=True,
9
- mean=[
10
- 123.675,
11
- 116.28,
12
- 103.53,
13
- ],
14
- pad_val=0,
15
- seg_pad_val=255,
16
- size=(
17
- 512,
18
- 512,
19
- ),
20
- std=[
21
- 58.395,
22
- 57.12,
23
- 57.375,
24
- ],
25
- type='SegDataPreProcessor')
26
- data_root = 'CVRPDataset/'
27
- dataset_type = 'CVRPDataset'
28
- default_hooks = dict(
29
- checkpoint=dict(
30
- by_epoch=False,
31
- interval=2500,
32
- max_keep_ckpts=1,
33
- save_best='mIoU',
34
- type='CheckpointHook'),
35
- logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
36
- param_scheduler=dict(type='ParamSchedulerHook'),
37
- sampler_seed=dict(type='DistSamplerSeedHook'),
38
- timer=dict(type='IterTimerHook'),
39
- visualization=dict(type='SegVisualizationHook'))
40
- default_scope = 'mmseg'
41
- env_cfg = dict(
42
- cudnn_benchmark=True,
43
- dist_cfg=dict(backend='nccl'),
44
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
45
- img_ratios = [
46
- 0.5,
47
- 0.75,
48
- 1.0,
49
- 1.25,
50
- 1.5,
51
- 1.75,
52
- ]
53
- load_from = None
54
- log_level = 'INFO'
55
- log_processor = dict(by_epoch=False)
56
- model = dict(
57
- auxiliary_head=dict(
58
- align_corners=False,
59
- channels=256,
60
- concat_input=False,
61
- dropout_ratio=0.1,
62
- in_channels=768,
63
- in_index=2,
64
- loss_decode=dict(
65
- loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
66
- norm_cfg=dict(requires_grad=True, type='SyncBN'),
67
- num_classes=2,
68
- num_convs=1,
69
- type='FCNHead'),
70
- backbone=dict(
71
- attn_drop_rate=0.0,
72
- depths=[
73
- 2,
74
- 2,
75
- 18,
76
- 2,
77
- ],
78
- drop_path_rate=0.3,
79
- drop_rate=0.0,
80
- embed_dims=192,
81
- mlp_ratio=4,
82
- num_heads=[
83
- 6,
84
- 12,
85
- 24,
86
- 48,
87
- ],
88
- out_indices=(
89
- 0,
90
- 1,
91
- 2,
92
- 3,
93
- ),
94
- patch_norm=True,
95
- qk_scale=None,
96
- qkv_bias=True,
97
- type='SwinTransformer',
98
- use_abs_pos_embed=False,
99
- window_size=7),
100
- data_preprocessor=dict(
101
- bgr_to_rgb=True,
102
- mean=[
103
- 123.675,
104
- 116.28,
105
- 103.53,
106
- ],
107
- pad_val=0,
108
- seg_pad_val=255,
109
- size=(
110
- 512,
111
- 512,
112
- ),
113
- std=[
114
- 58.395,
115
- 57.12,
116
- 57.375,
117
- ],
118
- type='SegDataPreProcessor'),
119
- decode_head=dict(
120
- kernel_generate_head=dict(
121
- align_corners=False,
122
- channels=512,
123
- dropout_ratio=0.1,
124
- in_channels=[
125
- 192,
126
- 384,
127
- 768,
128
- 1536,
129
- ],
130
- in_index=[
131
- 0,
132
- 1,
133
- 2,
134
- 3,
135
- ],
136
- loss_decode=dict(
137
- loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
138
- norm_cfg=dict(requires_grad=True, type='SyncBN'),
139
- num_classes=2,
140
- pool_scales=(
141
- 1,
142
- 2,
143
- 3,
144
- 6,
145
- ),
146
- type='UPerHead'),
147
- kernel_update_head=[
148
- dict(
149
- conv_kernel_size=1,
150
- dropout=0.0,
151
- feat_transform_cfg=dict(
152
- act_cfg=None, conv_cfg=dict(type='Conv2d')),
153
- feedforward_channels=2048,
154
- ffn_act_cfg=dict(inplace=True, type='ReLU'),
155
- in_channels=512,
156
- kernel_updator_cfg=dict(
157
- act_cfg=dict(inplace=True, type='ReLU'),
158
- feat_channels=256,
159
- in_channels=256,
160
- norm_cfg=dict(type='LN'),
161
- out_channels=256,
162
- type='KernelUpdator'),
163
- num_classes=150,
164
- num_ffn_fcs=2,
165
- num_heads=8,
166
- num_mask_fcs=1,
167
- out_channels=512,
168
- type='KernelUpdateHead',
169
- with_ffn=True),
170
- dict(
171
- conv_kernel_size=1,
172
- dropout=0.0,
173
- feat_transform_cfg=dict(
174
- act_cfg=None, conv_cfg=dict(type='Conv2d')),
175
- feedforward_channels=2048,
176
- ffn_act_cfg=dict(inplace=True, type='ReLU'),
177
- in_channels=512,
178
- kernel_updator_cfg=dict(
179
- act_cfg=dict(inplace=True, type='ReLU'),
180
- feat_channels=256,
181
- in_channels=256,
182
- norm_cfg=dict(type='LN'),
183
- out_channels=256,
184
- type='KernelUpdator'),
185
- num_classes=150,
186
- num_ffn_fcs=2,
187
- num_heads=8,
188
- num_mask_fcs=1,
189
- out_channels=512,
190
- type='KernelUpdateHead',
191
- with_ffn=True),
192
- dict(
193
- conv_kernel_size=1,
194
- dropout=0.0,
195
- feat_transform_cfg=dict(
196
- act_cfg=None, conv_cfg=dict(type='Conv2d')),
197
- feedforward_channels=2048,
198
- ffn_act_cfg=dict(inplace=True, type='ReLU'),
199
- in_channels=512,
200
- kernel_updator_cfg=dict(
201
- act_cfg=dict(inplace=True, type='ReLU'),
202
- feat_channels=256,
203
- in_channels=256,
204
- norm_cfg=dict(type='LN'),
205
- out_channels=256,
206
- type='KernelUpdator'),
207
- num_classes=150,
208
- num_ffn_fcs=2,
209
- num_heads=8,
210
- num_mask_fcs=1,
211
- out_channels=512,
212
- type='KernelUpdateHead',
213
- with_ffn=True),
214
- ],
215
- num_stages=3,
216
- type='IterativeDecodeHead'),
217
- pretrained=
218
- 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth',
219
- test_cfg=dict(mode='whole'),
220
- train_cfg=dict(),
221
- type='EncoderDecoder')
222
- norm_cfg = dict(requires_grad=True, type='BN')
223
- num_stages = 3
224
- optim_wrapper = dict(
225
- clip_grad=dict(max_norm=1, norm_type=2),
226
- optimizer=dict(
227
- betas=(
228
- 0.9,
229
- 0.999,
230
- ), lr=6e-05, type='AdamW', weight_decay=0.0005),
231
- paramwise_cfg=dict(
232
- custom_keys=dict(
233
- absolute_pos_embed=dict(decay_mult=0.0),
234
- norm=dict(decay_mult=0.0),
235
- relative_position_bias_table=dict(decay_mult=0.0))),
236
- type='OptimWrapper')
237
- optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
238
- param_scheduler = [
239
- dict(
240
- begin=0, by_epoch=False, end=1000, start_factor=0.001,
241
- type='LinearLR'),
242
- dict(
243
- begin=1000,
244
- by_epoch=False,
245
- end=80000,
246
- milestones=[
247
- 60000,
248
- 72000,
249
- ],
250
- type='MultiStepLR'),
251
- ]
252
- randomness = dict(seed=0)
253
- resume = False
254
- test_cfg = dict(type='TestLoop')
255
- test_dataloader = dict(
256
- batch_size=1,
257
- dataset=dict(
258
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
259
- data_root='CVRPDataset/',
260
- pipeline=[
261
- dict(type='LoadImageFromFile'),
262
- dict(keep_ratio=True, scale=(
263
- 2048,
264
- 1024,
265
- ), type='Resize'),
266
- dict(type='LoadAnnotations'),
267
- dict(type='PackSegInputs'),
268
- ],
269
- type='CVRPDataset'),
270
- num_workers=4,
271
- persistent_workers=True,
272
- sampler=dict(shuffle=False, type='DefaultSampler'))
273
- test_evaluator = dict(
274
- iou_metrics=[
275
- 'mIoU',
276
- 'mDice',
277
- 'mFscore',
278
- ], type='IoUMetric')
279
- test_pipeline = [
280
- dict(type='LoadImageFromFile'),
281
- dict(keep_ratio=True, scale=(
282
- 2048,
283
- 1024,
284
- ), type='Resize'),
285
- dict(type='LoadAnnotations'),
286
- dict(type='PackSegInputs'),
287
- ]
288
- train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
289
- train_dataloader = dict(
290
- batch_size=2,
291
- dataset=dict(
292
- data_prefix=dict(
293
- img_path='img_dir/train', seg_map_path='ann_dir/train'),
294
- data_root='CVRPDataset/',
295
- pipeline=[
296
- dict(type='LoadImageFromFile'),
297
- dict(type='LoadAnnotations'),
298
- dict(
299
- keep_ratio=True,
300
- ratio_range=(
301
- 0.5,
302
- 2.0,
303
- ),
304
- scale=(
305
- 2048,
306
- 1024,
307
- ),
308
- type='RandomResize'),
309
- dict(
310
- cat_max_ratio=0.75, crop_size=(
311
- 512,
312
- 512,
313
- ), type='RandomCrop'),
314
- dict(prob=0.5, type='RandomFlip'),
315
- dict(type='PhotoMetricDistortion'),
316
- dict(type='PackSegInputs'),
317
- ],
318
- type='CVRPDataset'),
319
- num_workers=2,
320
- persistent_workers=True,
321
- sampler=dict(shuffle=True, type='InfiniteSampler'))
322
- train_pipeline = [
323
- dict(type='LoadImageFromFile'),
324
- dict(type='LoadAnnotations'),
325
- dict(
326
- keep_ratio=True,
327
- ratio_range=(
328
- 0.5,
329
- 2.0,
330
- ),
331
- scale=(
332
- 2048,
333
- 1024,
334
- ),
335
- type='RandomResize'),
336
- dict(cat_max_ratio=0.75, crop_size=(
337
- 512,
338
- 512,
339
- ), type='RandomCrop'),
340
- dict(prob=0.5, type='RandomFlip'),
341
- dict(type='PhotoMetricDistortion'),
342
- dict(type='PackSegInputs'),
343
- ]
344
- tta_model = dict(type='SegTTAModel')
345
- tta_pipeline = [
346
- dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
347
- dict(
348
- transforms=[
349
- [
350
- dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
351
- dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
352
- dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
353
- dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
354
- dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
355
- dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
356
- ],
357
- [
358
- dict(direction='horizontal', prob=0.0, type='RandomFlip'),
359
- dict(direction='horizontal', prob=1.0, type='RandomFlip'),
360
- ],
361
- [
362
- dict(type='LoadAnnotations'),
363
- ],
364
- [
365
- dict(type='PackSegInputs'),
366
- ],
367
- ],
368
- type='TestTimeAug'),
369
- ]
370
- val_cfg = dict(type='ValLoop')
371
- val_dataloader = dict(
372
- batch_size=1,
373
- dataset=dict(
374
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
375
- data_root='CVRPDataset/',
376
- pipeline=[
377
- dict(type='LoadImageFromFile'),
378
- dict(keep_ratio=True, scale=(
379
- 2048,
380
- 1024,
381
- ), type='Resize'),
382
- dict(type='LoadAnnotations'),
383
- dict(type='PackSegInputs'),
384
- ],
385
- type='CVRPDataset'),
386
- num_workers=4,
387
- persistent_workers=True,
388
- sampler=dict(shuffle=False, type='DefaultSampler'))
389
- val_evaluator = dict(
390
- iou_metrics=[
391
- 'mIoU',
392
- 'mDice',
393
- 'mFscore',
394
- ], type='IoUMetric')
395
- vis_backends = [
396
- dict(type='LocalVisBackend'),
397
- ]
398
- visualizer = dict(
399
- name='visualizer',
400
- type='SegLocalVisualizer',
401
- vis_backends=[
402
- dict(type='LocalVisBackend'),
403
- ])
404
- work_dir = './work_dirs/CVRP_knet'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CVRP_configs/CVRP_Mask2Former.py DELETED
@@ -1,572 +0,0 @@
1
- auto_scale_lr = dict(base_batch_size=16, enable=False)
2
- backbone_embed_multi = dict(decay_mult=0.0, lr_mult=0.1)
3
- backbone_norm_multi = dict(decay_mult=0.0, lr_mult=0.1)
4
- crop_size = (
5
- 512,
6
- 512,
7
- )
8
- custom_keys = dict({
9
- 'absolute_pos_embed':
10
- dict(decay_mult=0.0, lr_mult=0.1),
11
- 'backbone':
12
- dict(decay_mult=1.0, lr_mult=0.1),
13
- 'backbone.norm':
14
- dict(decay_mult=0.0, lr_mult=0.1),
15
- 'backbone.patch_embed.norm':
16
- dict(decay_mult=0.0, lr_mult=0.1),
17
- 'backbone.stages.0.blocks.0.norm':
18
- dict(decay_mult=0.0, lr_mult=0.1),
19
- 'backbone.stages.0.blocks.1.norm':
20
- dict(decay_mult=0.0, lr_mult=0.1),
21
- 'backbone.stages.0.downsample.norm':
22
- dict(decay_mult=0.0, lr_mult=0.1),
23
- 'backbone.stages.1.blocks.0.norm':
24
- dict(decay_mult=0.0, lr_mult=0.1),
25
- 'backbone.stages.1.blocks.1.norm':
26
- dict(decay_mult=0.0, lr_mult=0.1),
27
- 'backbone.stages.1.downsample.norm':
28
- dict(decay_mult=0.0, lr_mult=0.1),
29
- 'backbone.stages.2.blocks.0.norm':
30
- dict(decay_mult=0.0, lr_mult=0.1),
31
- 'backbone.stages.2.blocks.1.norm':
32
- dict(decay_mult=0.0, lr_mult=0.1),
33
- 'backbone.stages.2.blocks.10.norm':
34
- dict(decay_mult=0.0, lr_mult=0.1),
35
- 'backbone.stages.2.blocks.11.norm':
36
- dict(decay_mult=0.0, lr_mult=0.1),
37
- 'backbone.stages.2.blocks.12.norm':
38
- dict(decay_mult=0.0, lr_mult=0.1),
39
- 'backbone.stages.2.blocks.13.norm':
40
- dict(decay_mult=0.0, lr_mult=0.1),
41
- 'backbone.stages.2.blocks.14.norm':
42
- dict(decay_mult=0.0, lr_mult=0.1),
43
- 'backbone.stages.2.blocks.15.norm':
44
- dict(decay_mult=0.0, lr_mult=0.1),
45
- 'backbone.stages.2.blocks.16.norm':
46
- dict(decay_mult=0.0, lr_mult=0.1),
47
- 'backbone.stages.2.blocks.17.norm':
48
- dict(decay_mult=0.0, lr_mult=0.1),
49
- 'backbone.stages.2.blocks.2.norm':
50
- dict(decay_mult=0.0, lr_mult=0.1),
51
- 'backbone.stages.2.blocks.3.norm':
52
- dict(decay_mult=0.0, lr_mult=0.1),
53
- 'backbone.stages.2.blocks.4.norm':
54
- dict(decay_mult=0.0, lr_mult=0.1),
55
- 'backbone.stages.2.blocks.5.norm':
56
- dict(decay_mult=0.0, lr_mult=0.1),
57
- 'backbone.stages.2.blocks.6.norm':
58
- dict(decay_mult=0.0, lr_mult=0.1),
59
- 'backbone.stages.2.blocks.7.norm':
60
- dict(decay_mult=0.0, lr_mult=0.1),
61
- 'backbone.stages.2.blocks.8.norm':
62
- dict(decay_mult=0.0, lr_mult=0.1),
63
- 'backbone.stages.2.blocks.9.norm':
64
- dict(decay_mult=0.0, lr_mult=0.1),
65
- 'backbone.stages.2.downsample.norm':
66
- dict(decay_mult=0.0, lr_mult=0.1),
67
- 'backbone.stages.3.blocks.0.norm':
68
- dict(decay_mult=0.0, lr_mult=0.1),
69
- 'backbone.stages.3.blocks.1.norm':
70
- dict(decay_mult=0.0, lr_mult=0.1),
71
- 'level_embed':
72
- dict(decay_mult=0.0, lr_mult=1.0),
73
- 'query_embed':
74
- dict(decay_mult=0.0, lr_mult=1.0),
75
- 'query_feat':
76
- dict(decay_mult=0.0, lr_mult=1.0),
77
- 'relative_position_bias_table':
78
- dict(decay_mult=0.0, lr_mult=0.1)
79
- })
80
- data_preprocessor = dict(
81
- bgr_to_rgb=True,
82
- mean=[
83
- 123.675,
84
- 116.28,
85
- 103.53,
86
- ],
87
- pad_val=0,
88
- seg_pad_val=255,
89
- size=(
90
- 640,
91
- 640,
92
- ),
93
- std=[
94
- 58.395,
95
- 57.12,
96
- 57.375,
97
- ],
98
- type='SegDataPreProcessor')
99
- data_root = 'CVRPDataset/'
100
- dataset_type = 'CVRPDataset'
101
- default_hooks = dict(
102
- checkpoint=dict(
103
- by_epoch=False,
104
- interval=2500,
105
- max_keep_ckpts=1,
106
- save_best='mIoU',
107
- type='CheckpointHook'),
108
- logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
109
- param_scheduler=dict(type='ParamSchedulerHook'),
110
- sampler_seed=dict(type='DistSamplerSeedHook'),
111
- timer=dict(type='IterTimerHook'),
112
- visualization=dict(type='SegVisualizationHook'))
113
- default_scope = 'mmseg'
114
- depths = [
115
- 2,
116
- 2,
117
- 18,
118
- 2,
119
- ]
120
- embed_multi = dict(decay_mult=0.0, lr_mult=1.0)
121
- env_cfg = dict(
122
- cudnn_benchmark=True,
123
- dist_cfg=dict(backend='nccl'),
124
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
125
- img_ratios = [
126
- 0.5,
127
- 0.75,
128
- 1.0,
129
- 1.25,
130
- 1.5,
131
- 1.75,
132
- ]
133
- load_from = None
134
- log_level = 'INFO'
135
- log_processor = dict(by_epoch=False)
136
- model = dict(
137
- backbone=dict(
138
- attn_drop_rate=0.0,
139
- depths=[
140
- 2,
141
- 2,
142
- 18,
143
- 2,
144
- ],
145
- drop_path_rate=0.3,
146
- drop_rate=0.0,
147
- embed_dims=192,
148
- frozen_stages=-1,
149
- init_cfg=dict(
150
- checkpoint=
151
- 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth',
152
- type='Pretrained'),
153
- mlp_ratio=4,
154
- num_heads=[
155
- 6,
156
- 12,
157
- 24,
158
- 48,
159
- ],
160
- out_indices=(
161
- 0,
162
- 1,
163
- 2,
164
- 3,
165
- ),
166
- patch_norm=True,
167
- pretrain_img_size=384,
168
- qk_scale=None,
169
- qkv_bias=True,
170
- type='SwinTransformer',
171
- window_size=12,
172
- with_cp=False),
173
- data_preprocessor=dict(
174
- bgr_to_rgb=True,
175
- mean=[
176
- 123.675,
177
- 116.28,
178
- 103.53,
179
- ],
180
- pad_val=0,
181
- seg_pad_val=255,
182
- size=(
183
- 512,
184
- 512,
185
- ),
186
- std=[
187
- 58.395,
188
- 57.12,
189
- 57.375,
190
- ],
191
- type='SegDataPreProcessor'),
192
- decode_head=dict(
193
- align_corners=False,
194
- enforce_decoder_input_project=False,
195
- feat_channels=256,
196
- in_channels=[
197
- 192,
198
- 384,
199
- 768,
200
- 1536,
201
- ],
202
- loss_cls=dict(
203
- class_weight=[
204
- 1.0,
205
- 1.0,
206
- 0.1,
207
- ],
208
- loss_weight=2.0,
209
- reduction='mean',
210
- type='mmdet.CrossEntropyLoss',
211
- use_sigmoid=False),
212
- loss_dice=dict(
213
- activate=True,
214
- eps=1.0,
215
- loss_weight=5.0,
216
- naive_dice=True,
217
- reduction='mean',
218
- type='mmdet.DiceLoss',
219
- use_sigmoid=True),
220
- loss_mask=dict(
221
- loss_weight=5.0,
222
- reduction='mean',
223
- type='mmdet.CrossEntropyLoss',
224
- use_sigmoid=True),
225
- num_classes=2,
226
- num_queries=100,
227
- num_transformer_feat_level=3,
228
- out_channels=256,
229
- pixel_decoder=dict(
230
- act_cfg=dict(type='ReLU'),
231
- encoder=dict(
232
- init_cfg=None,
233
- layer_cfg=dict(
234
- ffn_cfg=dict(
235
- act_cfg=dict(inplace=True, type='ReLU'),
236
- embed_dims=256,
237
- feedforward_channels=1024,
238
- ffn_drop=0.0,
239
- num_fcs=2),
240
- self_attn_cfg=dict(
241
- batch_first=True,
242
- dropout=0.0,
243
- embed_dims=256,
244
- im2col_step=64,
245
- init_cfg=None,
246
- norm_cfg=None,
247
- num_heads=8,
248
- num_levels=3,
249
- num_points=4)),
250
- num_layers=6),
251
- init_cfg=None,
252
- norm_cfg=dict(num_groups=32, type='GN'),
253
- num_outs=3,
254
- positional_encoding=dict(normalize=True, num_feats=128),
255
- type='mmdet.MSDeformAttnPixelDecoder'),
256
- positional_encoding=dict(normalize=True, num_feats=128),
257
- strides=[
258
- 4,
259
- 8,
260
- 16,
261
- 32,
262
- ],
263
- train_cfg=dict(
264
- assigner=dict(
265
- match_costs=[
266
- dict(type='mmdet.ClassificationCost', weight=2.0),
267
- dict(
268
- type='mmdet.CrossEntropyLossCost',
269
- use_sigmoid=True,
270
- weight=5.0),
271
- dict(
272
- eps=1.0,
273
- pred_act=True,
274
- type='mmdet.DiceCost',
275
- weight=5.0),
276
- ],
277
- type='mmdet.HungarianAssigner'),
278
- importance_sample_ratio=0.75,
279
- num_points=12544,
280
- oversample_ratio=3.0,
281
- sampler=dict(type='mmdet.MaskPseudoSampler')),
282
- transformer_decoder=dict(
283
- init_cfg=None,
284
- layer_cfg=dict(
285
- cross_attn_cfg=dict(
286
- attn_drop=0.0,
287
- batch_first=True,
288
- dropout_layer=None,
289
- embed_dims=256,
290
- num_heads=8,
291
- proj_drop=0.0),
292
- ffn_cfg=dict(
293
- act_cfg=dict(inplace=True, type='ReLU'),
294
- add_identity=True,
295
- dropout_layer=None,
296
- embed_dims=256,
297
- feedforward_channels=2048,
298
- ffn_drop=0.0,
299
- num_fcs=2),
300
- self_attn_cfg=dict(
301
- attn_drop=0.0,
302
- batch_first=True,
303
- dropout_layer=None,
304
- embed_dims=256,
305
- num_heads=8,
306
- proj_drop=0.0)),
307
- num_layers=9,
308
- return_intermediate=True),
309
- type='Mask2FormerHead'),
310
- test_cfg=dict(mode='whole'),
311
- train_cfg=dict(),
312
- type='EncoderDecoder')
313
- norm_cfg = dict(requires_grad=True, type='BN')
314
- num_classes = 150
315
- optim_wrapper = dict(
316
- clip_grad=dict(max_norm=0.01, norm_type=2),
317
- optimizer=dict(
318
- betas=(
319
- 0.9,
320
- 0.999,
321
- ),
322
- eps=1e-08,
323
- lr=0.0001,
324
- type='AdamW',
325
- weight_decay=0.05),
326
- paramwise_cfg=dict(
327
- custom_keys=dict({
328
- 'absolute_pos_embed':
329
- dict(decay_mult=0.0, lr_mult=0.1),
330
- 'backbone':
331
- dict(decay_mult=1.0, lr_mult=0.1),
332
- 'backbone.norm':
333
- dict(decay_mult=0.0, lr_mult=0.1),
334
- 'backbone.patch_embed.norm':
335
- dict(decay_mult=0.0, lr_mult=0.1),
336
- 'backbone.stages.0.blocks.0.norm':
337
- dict(decay_mult=0.0, lr_mult=0.1),
338
- 'backbone.stages.0.blocks.1.norm':
339
- dict(decay_mult=0.0, lr_mult=0.1),
340
- 'backbone.stages.0.downsample.norm':
341
- dict(decay_mult=0.0, lr_mult=0.1),
342
- 'backbone.stages.1.blocks.0.norm':
343
- dict(decay_mult=0.0, lr_mult=0.1),
344
- 'backbone.stages.1.blocks.1.norm':
345
- dict(decay_mult=0.0, lr_mult=0.1),
346
- 'backbone.stages.1.downsample.norm':
347
- dict(decay_mult=0.0, lr_mult=0.1),
348
- 'backbone.stages.2.blocks.0.norm':
349
- dict(decay_mult=0.0, lr_mult=0.1),
350
- 'backbone.stages.2.blocks.1.norm':
351
- dict(decay_mult=0.0, lr_mult=0.1),
352
- 'backbone.stages.2.blocks.10.norm':
353
- dict(decay_mult=0.0, lr_mult=0.1),
354
- 'backbone.stages.2.blocks.11.norm':
355
- dict(decay_mult=0.0, lr_mult=0.1),
356
- 'backbone.stages.2.blocks.12.norm':
357
- dict(decay_mult=0.0, lr_mult=0.1),
358
- 'backbone.stages.2.blocks.13.norm':
359
- dict(decay_mult=0.0, lr_mult=0.1),
360
- 'backbone.stages.2.blocks.14.norm':
361
- dict(decay_mult=0.0, lr_mult=0.1),
362
- 'backbone.stages.2.blocks.15.norm':
363
- dict(decay_mult=0.0, lr_mult=0.1),
364
- 'backbone.stages.2.blocks.16.norm':
365
- dict(decay_mult=0.0, lr_mult=0.1),
366
- 'backbone.stages.2.blocks.17.norm':
367
- dict(decay_mult=0.0, lr_mult=0.1),
368
- 'backbone.stages.2.blocks.2.norm':
369
- dict(decay_mult=0.0, lr_mult=0.1),
370
- 'backbone.stages.2.blocks.3.norm':
371
- dict(decay_mult=0.0, lr_mult=0.1),
372
- 'backbone.stages.2.blocks.4.norm':
373
- dict(decay_mult=0.0, lr_mult=0.1),
374
- 'backbone.stages.2.blocks.5.norm':
375
- dict(decay_mult=0.0, lr_mult=0.1),
376
- 'backbone.stages.2.blocks.6.norm':
377
- dict(decay_mult=0.0, lr_mult=0.1),
378
- 'backbone.stages.2.blocks.7.norm':
379
- dict(decay_mult=0.0, lr_mult=0.1),
380
- 'backbone.stages.2.blocks.8.norm':
381
- dict(decay_mult=0.0, lr_mult=0.1),
382
- 'backbone.stages.2.blocks.9.norm':
383
- dict(decay_mult=0.0, lr_mult=0.1),
384
- 'backbone.stages.2.downsample.norm':
385
- dict(decay_mult=0.0, lr_mult=0.1),
386
- 'backbone.stages.3.blocks.0.norm':
387
- dict(decay_mult=0.0, lr_mult=0.1),
388
- 'backbone.stages.3.blocks.1.norm':
389
- dict(decay_mult=0.0, lr_mult=0.1),
390
- 'level_embed':
391
- dict(decay_mult=0.0, lr_mult=1.0),
392
- 'query_embed':
393
- dict(decay_mult=0.0, lr_mult=1.0),
394
- 'query_feat':
395
- dict(decay_mult=0.0, lr_mult=1.0),
396
- 'relative_position_bias_table':
397
- dict(decay_mult=0.0, lr_mult=0.1)
398
- }),
399
- norm_decay_mult=0.0),
400
- type='OptimWrapper')
401
- optimizer = dict(
402
- betas=(
403
- 0.9,
404
- 0.999,
405
- ),
406
- eps=1e-08,
407
- lr=0.0001,
408
- type='AdamW',
409
- weight_decay=0.05)
410
- param_scheduler = [
411
- dict(
412
- begin=0,
413
- by_epoch=False,
414
- end=160000,
415
- eta_min=0,
416
- power=0.9,
417
- type='PolyLR'),
418
- ]
419
- pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth'
420
- randomness = dict(seed=0)
421
- resume = False
422
- test_cfg = dict(type='TestLoop')
423
- test_dataloader = dict(
424
- batch_size=1,
425
- dataset=dict(
426
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
427
- data_root='CVRPDataset/',
428
- pipeline=[
429
- dict(type='LoadImageFromFile'),
430
- dict(keep_ratio=True, scale=(
431
- 2048,
432
- 1024,
433
- ), type='Resize'),
434
- dict(type='LoadAnnotations'),
435
- dict(type='PackSegInputs'),
436
- ],
437
- type='CVRPDataset'),
438
- num_workers=4,
439
- persistent_workers=True,
440
- sampler=dict(shuffle=False, type='DefaultSampler'))
441
- test_evaluator = dict(
442
- iou_metrics=[
443
- 'mIoU',
444
- 'mDice',
445
- 'mFscore',
446
- ], type='IoUMetric')
447
- test_pipeline = [
448
- dict(type='LoadImageFromFile'),
449
- dict(keep_ratio=True, scale=(
450
- 2048,
451
- 1024,
452
- ), type='Resize'),
453
- dict(type='LoadAnnotations'),
454
- dict(type='PackSegInputs'),
455
- ]
456
- train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
457
- train_dataloader = dict(
458
- batch_size=2,
459
- dataset=dict(
460
- data_prefix=dict(
461
- img_path='img_dir/train', seg_map_path='ann_dir/train'),
462
- data_root='CVRPDataset/',
463
- pipeline=[
464
- dict(type='LoadImageFromFile'),
465
- dict(type='LoadAnnotations'),
466
- dict(
467
- keep_ratio=True,
468
- ratio_range=(
469
- 0.5,
470
- 2.0,
471
- ),
472
- scale=(
473
- 2048,
474
- 1024,
475
- ),
476
- type='RandomResize'),
477
- dict(
478
- cat_max_ratio=0.75, crop_size=(
479
- 512,
480
- 512,
481
- ), type='RandomCrop'),
482
- dict(prob=0.5, type='RandomFlip'),
483
- dict(type='PhotoMetricDistortion'),
484
- dict(type='PackSegInputs'),
485
- ],
486
- type='CVRPDataset'),
487
- num_workers=2,
488
- persistent_workers=True,
489
- sampler=dict(shuffle=True, type='InfiniteSampler'))
490
- train_pipeline = [
491
- dict(type='LoadImageFromFile'),
492
- dict(type='LoadAnnotations'),
493
- dict(
494
- keep_ratio=True,
495
- ratio_range=(
496
- 0.5,
497
- 2.0,
498
- ),
499
- scale=(
500
- 2048,
501
- 1024,
502
- ),
503
- type='RandomResize'),
504
- dict(cat_max_ratio=0.75, crop_size=(
505
- 512,
506
- 512,
507
- ), type='RandomCrop'),
508
- dict(prob=0.5, type='RandomFlip'),
509
- dict(type='PhotoMetricDistortion'),
510
- dict(type='PackSegInputs'),
511
- ]
512
- tta_model = dict(type='SegTTAModel')
513
- tta_pipeline = [
514
- dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
515
- dict(
516
- transforms=[
517
- [
518
- dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
519
- dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
520
- dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
521
- dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
522
- dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
523
- dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
524
- ],
525
- [
526
- dict(direction='horizontal', prob=0.0, type='RandomFlip'),
527
- dict(direction='horizontal', prob=1.0, type='RandomFlip'),
528
- ],
529
- [
530
- dict(type='LoadAnnotations'),
531
- ],
532
- [
533
- dict(type='PackSegInputs'),
534
- ],
535
- ],
536
- type='TestTimeAug'),
537
- ]
538
- val_cfg = dict(type='ValLoop')
539
- val_dataloader = dict(
540
- batch_size=1,
541
- dataset=dict(
542
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
543
- data_root='CVRPDataset/',
544
- pipeline=[
545
- dict(type='LoadImageFromFile'),
546
- dict(keep_ratio=True, scale=(
547
- 2048,
548
- 1024,
549
- ), type='Resize'),
550
- dict(type='LoadAnnotations'),
551
- dict(type='PackSegInputs'),
552
- ],
553
- type='CVRPDataset'),
554
- num_workers=4,
555
- persistent_workers=True,
556
- sampler=dict(shuffle=False, type='DefaultSampler'))
557
- val_evaluator = dict(
558
- iou_metrics=[
559
- 'mIoU',
560
- 'mDice',
561
- 'mFscore',
562
- ], type='IoUMetric')
563
- vis_backends = [
564
- dict(type='LocalVisBackend'),
565
- ]
566
- visualizer = dict(
567
- name='visualizer',
568
- type='SegLocalVisualizer',
569
- vis_backends=[
570
- dict(type='LocalVisBackend'),
571
- ])
572
- work_dir = './work_dirs/CVRP_mask2former'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CVRP_configs/CVRP_Segformer.py DELETED
@@ -1,322 +0,0 @@
1
- checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth'
2
- crop_size = (
3
- 512,
4
- 512,
5
- )
6
- data_preprocessor = dict(
7
- bgr_to_rgb=True,
8
- mean=[
9
- 123.675,
10
- 116.28,
11
- 103.53,
12
- ],
13
- pad_val=0,
14
- seg_pad_val=255,
15
- size=(
16
- 512,
17
- 512,
18
- ),
19
- std=[
20
- 58.395,
21
- 57.12,
22
- 57.375,
23
- ],
24
- type='SegDataPreProcessor')
25
- data_root = 'CVRPDataset/'
26
- dataset_type = 'CVRPDataset'
27
- default_hooks = dict(
28
- checkpoint=dict(
29
- by_epoch=False,
30
- interval=2500,
31
- max_keep_ckpts=1,
32
- save_best='mIoU',
33
- type='CheckpointHook'),
34
- logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
35
- param_scheduler=dict(type='ParamSchedulerHook'),
36
- sampler_seed=dict(type='DistSamplerSeedHook'),
37
- timer=dict(type='IterTimerHook'),
38
- visualization=dict(type='SegVisualizationHook'))
39
- default_scope = 'mmseg'
40
- env_cfg = dict(
41
- cudnn_benchmark=True,
42
- dist_cfg=dict(backend='nccl'),
43
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
44
- img_ratios = [
45
- 0.5,
46
- 0.75,
47
- 1.0,
48
- 1.25,
49
- 1.5,
50
- 1.75,
51
- ]
52
- load_from = None
53
- log_level = 'INFO'
54
- log_processor = dict(by_epoch=False)
55
- model = dict(
56
- backbone=dict(
57
- attn_drop_rate=0.0,
58
- drop_path_rate=0.1,
59
- drop_rate=0.0,
60
- embed_dims=64,
61
- in_channels=3,
62
- init_cfg=dict(
63
- checkpoint=
64
- 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth',
65
- type='Pretrained'),
66
- mlp_ratio=4,
67
- num_heads=[
68
- 1,
69
- 2,
70
- 5,
71
- 8,
72
- ],
73
- num_layers=[
74
- 3,
75
- 6,
76
- 40,
77
- 3,
78
- ],
79
- num_stages=4,
80
- out_indices=(
81
- 0,
82
- 1,
83
- 2,
84
- 3,
85
- ),
86
- patch_sizes=[
87
- 7,
88
- 3,
89
- 3,
90
- 3,
91
- ],
92
- qkv_bias=True,
93
- sr_ratios=[
94
- 8,
95
- 4,
96
- 2,
97
- 1,
98
- ],
99
- type='MixVisionTransformer'),
100
- data_preprocessor=dict(
101
- bgr_to_rgb=True,
102
- mean=[
103
- 123.675,
104
- 116.28,
105
- 103.53,
106
- ],
107
- pad_val=0,
108
- seg_pad_val=255,
109
- size=(
110
- 512,
111
- 512,
112
- ),
113
- std=[
114
- 58.395,
115
- 57.12,
116
- 57.375,
117
- ],
118
- type='SegDataPreProcessor'),
119
- decode_head=dict(
120
- align_corners=False,
121
- channels=256,
122
- dropout_ratio=0.1,
123
- in_channels=[
124
- 64,
125
- 128,
126
- 320,
127
- 512,
128
- ],
129
- in_index=[
130
- 0,
131
- 1,
132
- 2,
133
- 3,
134
- ],
135
- loss_decode=dict(
136
- loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
137
- norm_cfg=dict(requires_grad=True, type='BN'),
138
- num_classes=2,
139
- type='SegformerHead'),
140
- pretrained=None,
141
- test_cfg=dict(mode='whole'),
142
- train_cfg=dict(),
143
- type='EncoderDecoder')
144
- norm_cfg = dict(requires_grad=True, type='BN')
145
- optim_wrapper = dict(
146
- optimizer=dict(
147
- betas=(
148
- 0.9,
149
- 0.999,
150
- ), lr=6e-05, type='AdamW', weight_decay=0.01),
151
- paramwise_cfg=dict(
152
- custom_keys=dict(
153
- head=dict(lr_mult=10.0),
154
- norm=dict(decay_mult=0.0),
155
- pos_block=dict(decay_mult=0.0))),
156
- type='OptimWrapper')
157
- optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
158
- param_scheduler = [
159
- dict(
160
- begin=0, by_epoch=False, end=1500, start_factor=1e-06,
161
- type='LinearLR'),
162
- dict(
163
- begin=1500,
164
- by_epoch=False,
165
- end=160000,
166
- eta_min=0.0,
167
- power=1.0,
168
- type='PolyLR'),
169
- ]
170
- randomness = dict(seed=0)
171
- resume = False
172
- test_cfg = dict(type='TestLoop')
173
- test_dataloader = dict(
174
- batch_size=1,
175
- dataset=dict(
176
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
177
- data_root='CVRPDataset/',
178
- pipeline=[
179
- dict(type='LoadImageFromFile'),
180
- dict(keep_ratio=True, scale=(
181
- 2048,
182
- 1024,
183
- ), type='Resize'),
184
- dict(type='LoadAnnotations'),
185
- dict(type='PackSegInputs'),
186
- ],
187
- type='CVRPDataset'),
188
- num_workers=4,
189
- persistent_workers=True,
190
- sampler=dict(shuffle=False, type='DefaultSampler'))
191
- test_evaluator = dict(
192
- iou_metrics=[
193
- 'mIoU',
194
- 'mDice',
195
- 'mFscore',
196
- ], type='IoUMetric')
197
- test_pipeline = [
198
- dict(type='LoadImageFromFile'),
199
- dict(keep_ratio=True, scale=(
200
- 2048,
201
- 1024,
202
- ), type='Resize'),
203
- dict(type='LoadAnnotations'),
204
- dict(type='PackSegInputs'),
205
- ]
206
- train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
207
- train_dataloader = dict(
208
- batch_size=2,
209
- dataset=dict(
210
- data_prefix=dict(
211
- img_path='img_dir/train', seg_map_path='ann_dir/train'),
212
- data_root='CVRPDataset/',
213
- pipeline=[
214
- dict(type='LoadImageFromFile'),
215
- dict(type='LoadAnnotations'),
216
- dict(
217
- keep_ratio=True,
218
- ratio_range=(
219
- 0.5,
220
- 2.0,
221
- ),
222
- scale=(
223
- 2048,
224
- 1024,
225
- ),
226
- type='RandomResize'),
227
- dict(
228
- cat_max_ratio=0.75, crop_size=(
229
- 512,
230
- 512,
231
- ), type='RandomCrop'),
232
- dict(prob=0.5, type='RandomFlip'),
233
- dict(type='PhotoMetricDistortion'),
234
- dict(type='PackSegInputs'),
235
- ],
236
- type='CVRPDataset'),
237
- num_workers=2,
238
- persistent_workers=True,
239
- sampler=dict(shuffle=True, type='InfiniteSampler'))
240
- train_pipeline = [
241
- dict(type='LoadImageFromFile'),
242
- dict(type='LoadAnnotations'),
243
- dict(
244
- keep_ratio=True,
245
- ratio_range=(
246
- 0.5,
247
- 2.0,
248
- ),
249
- scale=(
250
- 2048,
251
- 1024,
252
- ),
253
- type='RandomResize'),
254
- dict(cat_max_ratio=0.75, crop_size=(
255
- 512,
256
- 512,
257
- ), type='RandomCrop'),
258
- dict(prob=0.5, type='RandomFlip'),
259
- dict(type='PhotoMetricDistortion'),
260
- dict(type='PackSegInputs'),
261
- ]
262
- tta_model = dict(type='SegTTAModel')
263
- tta_pipeline = [
264
- dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
265
- dict(
266
- transforms=[
267
- [
268
- dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
269
- dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
270
- dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
271
- dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
272
- dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
273
- dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
274
- ],
275
- [
276
- dict(direction='horizontal', prob=0.0, type='RandomFlip'),
277
- dict(direction='horizontal', prob=1.0, type='RandomFlip'),
278
- ],
279
- [
280
- dict(type='LoadAnnotations'),
281
- ],
282
- [
283
- dict(type='PackSegInputs'),
284
- ],
285
- ],
286
- type='TestTimeAug'),
287
- ]
288
- val_cfg = dict(type='ValLoop')
289
- val_dataloader = dict(
290
- batch_size=1,
291
- dataset=dict(
292
- data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
293
- data_root='CVRPDataset/',
294
- pipeline=[
295
- dict(type='LoadImageFromFile'),
296
- dict(keep_ratio=True, scale=(
297
- 2048,
298
- 1024,
299
- ), type='Resize'),
300
- dict(type='LoadAnnotations'),
301
- dict(type='PackSegInputs'),
302
- ],
303
- type='CVRPDataset'),
304
- num_workers=4,
305
- persistent_workers=True,
306
- sampler=dict(shuffle=False, type='DefaultSampler'))
307
- val_evaluator = dict(
308
- iou_metrics=[
309
- 'mIoU',
310
- 'mDice',
311
- 'mFscore',
312
- ], type='IoUMetric')
313
- vis_backends = [
314
- dict(type='LocalVisBackend'),
315
- ]
316
- visualizer = dict(
317
- name='visualizer',
318
- type='SegLocalVisualizer',
319
- vis_backends=[
320
- dict(type='LocalVisBackend'),
321
- ])
322
- work_dir = './work_dirs/CVRP_segformer'