Delete model_configs
Browse files- model_configs/CVRP_deeplabv3plus.py +0 -303
- model_configs/CVRP_knet.py +0 -404
- model_configs/CVRP_mask2former.py +0 -572
- model_configs/CVRP_segformer.py +0 -322
model_configs/CVRP_deeplabv3plus.py
DELETED
@@ -1,303 +0,0 @@
|
|
1 |
-
crop_size = (
|
2 |
-
512,
|
3 |
-
512,
|
4 |
-
)
|
5 |
-
data_preprocessor = dict(
|
6 |
-
bgr_to_rgb=True,
|
7 |
-
mean=[
|
8 |
-
123.675,
|
9 |
-
116.28,
|
10 |
-
103.53,
|
11 |
-
],
|
12 |
-
pad_val=0,
|
13 |
-
seg_pad_val=255,
|
14 |
-
size=(
|
15 |
-
512,
|
16 |
-
512,
|
17 |
-
),
|
18 |
-
std=[
|
19 |
-
58.395,
|
20 |
-
57.12,
|
21 |
-
57.375,
|
22 |
-
],
|
23 |
-
type='SegDataPreProcessor')
|
24 |
-
data_root = 'CVRPDataset/'
|
25 |
-
dataset_type = 'CVRPDataset'
|
26 |
-
default_hooks = dict(
|
27 |
-
checkpoint=dict(
|
28 |
-
by_epoch=False,
|
29 |
-
interval=2500,
|
30 |
-
max_keep_ckpts=1,
|
31 |
-
save_best='mIoU',
|
32 |
-
type='CheckpointHook'),
|
33 |
-
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
34 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
35 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
36 |
-
timer=dict(type='IterTimerHook'),
|
37 |
-
visualization=dict(type='SegVisualizationHook'))
|
38 |
-
default_scope = 'mmseg'
|
39 |
-
env_cfg = dict(
|
40 |
-
cudnn_benchmark=True,
|
41 |
-
dist_cfg=dict(backend='nccl'),
|
42 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
43 |
-
img_ratios = [
|
44 |
-
0.5,
|
45 |
-
0.75,
|
46 |
-
1.0,
|
47 |
-
1.25,
|
48 |
-
1.5,
|
49 |
-
1.75,
|
50 |
-
]
|
51 |
-
load_from = None
|
52 |
-
log_level = 'INFO'
|
53 |
-
log_processor = dict(by_epoch=False)
|
54 |
-
model = dict(
|
55 |
-
auxiliary_head=dict(
|
56 |
-
align_corners=False,
|
57 |
-
channels=256,
|
58 |
-
concat_input=False,
|
59 |
-
dropout_ratio=0.1,
|
60 |
-
in_channels=1024,
|
61 |
-
in_index=2,
|
62 |
-
loss_decode=dict(
|
63 |
-
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
64 |
-
norm_cfg=dict(requires_grad=True, type='BN'),
|
65 |
-
num_classes=2,
|
66 |
-
num_convs=1,
|
67 |
-
type='FCNHead'),
|
68 |
-
backbone=dict(
|
69 |
-
contract_dilation=True,
|
70 |
-
depth=101,
|
71 |
-
dilations=(
|
72 |
-
1,
|
73 |
-
1,
|
74 |
-
2,
|
75 |
-
4,
|
76 |
-
),
|
77 |
-
norm_cfg=dict(requires_grad=True, type='BN'),
|
78 |
-
norm_eval=False,
|
79 |
-
num_stages=4,
|
80 |
-
out_indices=(
|
81 |
-
0,
|
82 |
-
1,
|
83 |
-
2,
|
84 |
-
3,
|
85 |
-
),
|
86 |
-
strides=(
|
87 |
-
1,
|
88 |
-
2,
|
89 |
-
1,
|
90 |
-
1,
|
91 |
-
),
|
92 |
-
style='pytorch',
|
93 |
-
type='ResNetV1c'),
|
94 |
-
data_preprocessor=dict(
|
95 |
-
bgr_to_rgb=True,
|
96 |
-
mean=[
|
97 |
-
123.675,
|
98 |
-
116.28,
|
99 |
-
103.53,
|
100 |
-
],
|
101 |
-
pad_val=0,
|
102 |
-
seg_pad_val=255,
|
103 |
-
size=(
|
104 |
-
512,
|
105 |
-
512,
|
106 |
-
),
|
107 |
-
std=[
|
108 |
-
58.395,
|
109 |
-
57.12,
|
110 |
-
57.375,
|
111 |
-
],
|
112 |
-
type='SegDataPreProcessor'),
|
113 |
-
decode_head=dict(
|
114 |
-
align_corners=False,
|
115 |
-
c1_channels=48,
|
116 |
-
c1_in_channels=256,
|
117 |
-
channels=512,
|
118 |
-
dilations=(
|
119 |
-
1,
|
120 |
-
12,
|
121 |
-
24,
|
122 |
-
36,
|
123 |
-
),
|
124 |
-
dropout_ratio=0.1,
|
125 |
-
in_channels=2048,
|
126 |
-
in_index=3,
|
127 |
-
loss_decode=dict(
|
128 |
-
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
129 |
-
norm_cfg=dict(requires_grad=True, type='BN'),
|
130 |
-
num_classes=2,
|
131 |
-
type='DepthwiseSeparableASPPHead'),
|
132 |
-
pretrained='open-mmlab://resnet101_v1c',
|
133 |
-
test_cfg=dict(mode='whole'),
|
134 |
-
train_cfg=dict(),
|
135 |
-
type='EncoderDecoder')
|
136 |
-
norm_cfg = dict(requires_grad=True, type='BN')
|
137 |
-
optim_wrapper = dict(
|
138 |
-
clip_grad=None,
|
139 |
-
optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005),
|
140 |
-
type='OptimWrapper')
|
141 |
-
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
142 |
-
param_scheduler = [
|
143 |
-
dict(
|
144 |
-
begin=0,
|
145 |
-
by_epoch=False,
|
146 |
-
end=160000,
|
147 |
-
eta_min=0.0001,
|
148 |
-
power=0.9,
|
149 |
-
type='PolyLR'),
|
150 |
-
]
|
151 |
-
randomness = dict(seed=0)
|
152 |
-
resume = False
|
153 |
-
test_cfg = dict(type='TestLoop')
|
154 |
-
test_dataloader = dict(
|
155 |
-
batch_size=1,
|
156 |
-
dataset=dict(
|
157 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
158 |
-
data_root='CVRPDataset/',
|
159 |
-
pipeline=[
|
160 |
-
dict(type='LoadImageFromFile'),
|
161 |
-
dict(keep_ratio=True, scale=(
|
162 |
-
2048,
|
163 |
-
1024,
|
164 |
-
), type='Resize'),
|
165 |
-
dict(type='LoadAnnotations'),
|
166 |
-
dict(type='PackSegInputs'),
|
167 |
-
],
|
168 |
-
type='CVRPDataset'),
|
169 |
-
num_workers=4,
|
170 |
-
persistent_workers=True,
|
171 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
172 |
-
test_evaluator = dict(
|
173 |
-
iou_metrics=[
|
174 |
-
'mIoU',
|
175 |
-
'mDice',
|
176 |
-
'mFscore',
|
177 |
-
], type='IoUMetric')
|
178 |
-
test_pipeline = [
|
179 |
-
dict(type='LoadImageFromFile'),
|
180 |
-
dict(keep_ratio=True, scale=(
|
181 |
-
2048,
|
182 |
-
1024,
|
183 |
-
), type='Resize'),
|
184 |
-
dict(type='LoadAnnotations'),
|
185 |
-
dict(type='PackSegInputs'),
|
186 |
-
]
|
187 |
-
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
188 |
-
train_dataloader = dict(
|
189 |
-
batch_size=4,
|
190 |
-
dataset=dict(
|
191 |
-
data_prefix=dict(
|
192 |
-
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
193 |
-
data_root='CVRPDataset/',
|
194 |
-
pipeline=[
|
195 |
-
dict(type='LoadImageFromFile'),
|
196 |
-
dict(type='LoadAnnotations'),
|
197 |
-
dict(
|
198 |
-
keep_ratio=True,
|
199 |
-
ratio_range=(
|
200 |
-
0.5,
|
201 |
-
2.0,
|
202 |
-
),
|
203 |
-
scale=(
|
204 |
-
2048,
|
205 |
-
1024,
|
206 |
-
),
|
207 |
-
type='RandomResize'),
|
208 |
-
dict(
|
209 |
-
cat_max_ratio=0.75, crop_size=(
|
210 |
-
512,
|
211 |
-
512,
|
212 |
-
), type='RandomCrop'),
|
213 |
-
dict(prob=0.5, type='RandomFlip'),
|
214 |
-
dict(type='PhotoMetricDistortion'),
|
215 |
-
dict(type='PackSegInputs'),
|
216 |
-
],
|
217 |
-
type='CVRPDataset'),
|
218 |
-
num_workers=2,
|
219 |
-
persistent_workers=True,
|
220 |
-
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
221 |
-
train_pipeline = [
|
222 |
-
dict(type='LoadImageFromFile'),
|
223 |
-
dict(type='LoadAnnotations'),
|
224 |
-
dict(
|
225 |
-
keep_ratio=True,
|
226 |
-
ratio_range=(
|
227 |
-
0.5,
|
228 |
-
2.0,
|
229 |
-
),
|
230 |
-
scale=(
|
231 |
-
2048,
|
232 |
-
1024,
|
233 |
-
),
|
234 |
-
type='RandomResize'),
|
235 |
-
dict(cat_max_ratio=0.75, crop_size=(
|
236 |
-
512,
|
237 |
-
512,
|
238 |
-
), type='RandomCrop'),
|
239 |
-
dict(prob=0.5, type='RandomFlip'),
|
240 |
-
dict(type='PhotoMetricDistortion'),
|
241 |
-
dict(type='PackSegInputs'),
|
242 |
-
]
|
243 |
-
tta_model = dict(type='SegTTAModel')
|
244 |
-
tta_pipeline = [
|
245 |
-
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
246 |
-
dict(
|
247 |
-
transforms=[
|
248 |
-
[
|
249 |
-
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
250 |
-
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
251 |
-
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
252 |
-
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
253 |
-
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
254 |
-
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
255 |
-
],
|
256 |
-
[
|
257 |
-
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
258 |
-
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
259 |
-
],
|
260 |
-
[
|
261 |
-
dict(type='LoadAnnotations'),
|
262 |
-
],
|
263 |
-
[
|
264 |
-
dict(type='PackSegInputs'),
|
265 |
-
],
|
266 |
-
],
|
267 |
-
type='TestTimeAug'),
|
268 |
-
]
|
269 |
-
val_cfg = dict(type='ValLoop')
|
270 |
-
val_dataloader = dict(
|
271 |
-
batch_size=1,
|
272 |
-
dataset=dict(
|
273 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
274 |
-
data_root='CVRPDataset/',
|
275 |
-
pipeline=[
|
276 |
-
dict(type='LoadImageFromFile'),
|
277 |
-
dict(keep_ratio=True, scale=(
|
278 |
-
2048,
|
279 |
-
1024,
|
280 |
-
), type='Resize'),
|
281 |
-
dict(type='LoadAnnotations'),
|
282 |
-
dict(type='PackSegInputs'),
|
283 |
-
],
|
284 |
-
type='CVRPDataset'),
|
285 |
-
num_workers=4,
|
286 |
-
persistent_workers=True,
|
287 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
288 |
-
val_evaluator = dict(
|
289 |
-
iou_metrics=[
|
290 |
-
'mIoU',
|
291 |
-
'mDice',
|
292 |
-
'mFscore',
|
293 |
-
], type='IoUMetric')
|
294 |
-
vis_backends = [
|
295 |
-
dict(type='LocalVisBackend'),
|
296 |
-
]
|
297 |
-
visualizer = dict(
|
298 |
-
name='visualizer',
|
299 |
-
type='SegLocalVisualizer',
|
300 |
-
vis_backends=[
|
301 |
-
dict(type='LocalVisBackend'),
|
302 |
-
])
|
303 |
-
work_dir = './work_dirs/CVRP_deeplabv3plus'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_configs/CVRP_knet.py
DELETED
@@ -1,404 +0,0 @@
|
|
1 |
-
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth'
|
2 |
-
conv_kernel_size = 1
|
3 |
-
crop_size = (
|
4 |
-
512,
|
5 |
-
512,
|
6 |
-
)
|
7 |
-
data_preprocessor = dict(
|
8 |
-
bgr_to_rgb=True,
|
9 |
-
mean=[
|
10 |
-
123.675,
|
11 |
-
116.28,
|
12 |
-
103.53,
|
13 |
-
],
|
14 |
-
pad_val=0,
|
15 |
-
seg_pad_val=255,
|
16 |
-
size=(
|
17 |
-
512,
|
18 |
-
512,
|
19 |
-
),
|
20 |
-
std=[
|
21 |
-
58.395,
|
22 |
-
57.12,
|
23 |
-
57.375,
|
24 |
-
],
|
25 |
-
type='SegDataPreProcessor')
|
26 |
-
data_root = 'CVRPDataset/'
|
27 |
-
dataset_type = 'CVRPDataset'
|
28 |
-
default_hooks = dict(
|
29 |
-
checkpoint=dict(
|
30 |
-
by_epoch=False,
|
31 |
-
interval=2500,
|
32 |
-
max_keep_ckpts=1,
|
33 |
-
save_best='mIoU',
|
34 |
-
type='CheckpointHook'),
|
35 |
-
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
36 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
37 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
38 |
-
timer=dict(type='IterTimerHook'),
|
39 |
-
visualization=dict(type='SegVisualizationHook'))
|
40 |
-
default_scope = 'mmseg'
|
41 |
-
env_cfg = dict(
|
42 |
-
cudnn_benchmark=True,
|
43 |
-
dist_cfg=dict(backend='nccl'),
|
44 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
45 |
-
img_ratios = [
|
46 |
-
0.5,
|
47 |
-
0.75,
|
48 |
-
1.0,
|
49 |
-
1.25,
|
50 |
-
1.5,
|
51 |
-
1.75,
|
52 |
-
]
|
53 |
-
load_from = None
|
54 |
-
log_level = 'INFO'
|
55 |
-
log_processor = dict(by_epoch=False)
|
56 |
-
model = dict(
|
57 |
-
auxiliary_head=dict(
|
58 |
-
align_corners=False,
|
59 |
-
channels=256,
|
60 |
-
concat_input=False,
|
61 |
-
dropout_ratio=0.1,
|
62 |
-
in_channels=768,
|
63 |
-
in_index=2,
|
64 |
-
loss_decode=dict(
|
65 |
-
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
66 |
-
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
67 |
-
num_classes=2,
|
68 |
-
num_convs=1,
|
69 |
-
type='FCNHead'),
|
70 |
-
backbone=dict(
|
71 |
-
attn_drop_rate=0.0,
|
72 |
-
depths=[
|
73 |
-
2,
|
74 |
-
2,
|
75 |
-
18,
|
76 |
-
2,
|
77 |
-
],
|
78 |
-
drop_path_rate=0.3,
|
79 |
-
drop_rate=0.0,
|
80 |
-
embed_dims=192,
|
81 |
-
mlp_ratio=4,
|
82 |
-
num_heads=[
|
83 |
-
6,
|
84 |
-
12,
|
85 |
-
24,
|
86 |
-
48,
|
87 |
-
],
|
88 |
-
out_indices=(
|
89 |
-
0,
|
90 |
-
1,
|
91 |
-
2,
|
92 |
-
3,
|
93 |
-
),
|
94 |
-
patch_norm=True,
|
95 |
-
qk_scale=None,
|
96 |
-
qkv_bias=True,
|
97 |
-
type='SwinTransformer',
|
98 |
-
use_abs_pos_embed=False,
|
99 |
-
window_size=7),
|
100 |
-
data_preprocessor=dict(
|
101 |
-
bgr_to_rgb=True,
|
102 |
-
mean=[
|
103 |
-
123.675,
|
104 |
-
116.28,
|
105 |
-
103.53,
|
106 |
-
],
|
107 |
-
pad_val=0,
|
108 |
-
seg_pad_val=255,
|
109 |
-
size=(
|
110 |
-
512,
|
111 |
-
512,
|
112 |
-
),
|
113 |
-
std=[
|
114 |
-
58.395,
|
115 |
-
57.12,
|
116 |
-
57.375,
|
117 |
-
],
|
118 |
-
type='SegDataPreProcessor'),
|
119 |
-
decode_head=dict(
|
120 |
-
kernel_generate_head=dict(
|
121 |
-
align_corners=False,
|
122 |
-
channels=512,
|
123 |
-
dropout_ratio=0.1,
|
124 |
-
in_channels=[
|
125 |
-
192,
|
126 |
-
384,
|
127 |
-
768,
|
128 |
-
1536,
|
129 |
-
],
|
130 |
-
in_index=[
|
131 |
-
0,
|
132 |
-
1,
|
133 |
-
2,
|
134 |
-
3,
|
135 |
-
],
|
136 |
-
loss_decode=dict(
|
137 |
-
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
138 |
-
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
139 |
-
num_classes=2,
|
140 |
-
pool_scales=(
|
141 |
-
1,
|
142 |
-
2,
|
143 |
-
3,
|
144 |
-
6,
|
145 |
-
),
|
146 |
-
type='UPerHead'),
|
147 |
-
kernel_update_head=[
|
148 |
-
dict(
|
149 |
-
conv_kernel_size=1,
|
150 |
-
dropout=0.0,
|
151 |
-
feat_transform_cfg=dict(
|
152 |
-
act_cfg=None, conv_cfg=dict(type='Conv2d')),
|
153 |
-
feedforward_channels=2048,
|
154 |
-
ffn_act_cfg=dict(inplace=True, type='ReLU'),
|
155 |
-
in_channels=512,
|
156 |
-
kernel_updator_cfg=dict(
|
157 |
-
act_cfg=dict(inplace=True, type='ReLU'),
|
158 |
-
feat_channels=256,
|
159 |
-
in_channels=256,
|
160 |
-
norm_cfg=dict(type='LN'),
|
161 |
-
out_channels=256,
|
162 |
-
type='KernelUpdator'),
|
163 |
-
num_classes=150,
|
164 |
-
num_ffn_fcs=2,
|
165 |
-
num_heads=8,
|
166 |
-
num_mask_fcs=1,
|
167 |
-
out_channels=512,
|
168 |
-
type='KernelUpdateHead',
|
169 |
-
with_ffn=True),
|
170 |
-
dict(
|
171 |
-
conv_kernel_size=1,
|
172 |
-
dropout=0.0,
|
173 |
-
feat_transform_cfg=dict(
|
174 |
-
act_cfg=None, conv_cfg=dict(type='Conv2d')),
|
175 |
-
feedforward_channels=2048,
|
176 |
-
ffn_act_cfg=dict(inplace=True, type='ReLU'),
|
177 |
-
in_channels=512,
|
178 |
-
kernel_updator_cfg=dict(
|
179 |
-
act_cfg=dict(inplace=True, type='ReLU'),
|
180 |
-
feat_channels=256,
|
181 |
-
in_channels=256,
|
182 |
-
norm_cfg=dict(type='LN'),
|
183 |
-
out_channels=256,
|
184 |
-
type='KernelUpdator'),
|
185 |
-
num_classes=150,
|
186 |
-
num_ffn_fcs=2,
|
187 |
-
num_heads=8,
|
188 |
-
num_mask_fcs=1,
|
189 |
-
out_channels=512,
|
190 |
-
type='KernelUpdateHead',
|
191 |
-
with_ffn=True),
|
192 |
-
dict(
|
193 |
-
conv_kernel_size=1,
|
194 |
-
dropout=0.0,
|
195 |
-
feat_transform_cfg=dict(
|
196 |
-
act_cfg=None, conv_cfg=dict(type='Conv2d')),
|
197 |
-
feedforward_channels=2048,
|
198 |
-
ffn_act_cfg=dict(inplace=True, type='ReLU'),
|
199 |
-
in_channels=512,
|
200 |
-
kernel_updator_cfg=dict(
|
201 |
-
act_cfg=dict(inplace=True, type='ReLU'),
|
202 |
-
feat_channels=256,
|
203 |
-
in_channels=256,
|
204 |
-
norm_cfg=dict(type='LN'),
|
205 |
-
out_channels=256,
|
206 |
-
type='KernelUpdator'),
|
207 |
-
num_classes=150,
|
208 |
-
num_ffn_fcs=2,
|
209 |
-
num_heads=8,
|
210 |
-
num_mask_fcs=1,
|
211 |
-
out_channels=512,
|
212 |
-
type='KernelUpdateHead',
|
213 |
-
with_ffn=True),
|
214 |
-
],
|
215 |
-
num_stages=3,
|
216 |
-
type='IterativeDecodeHead'),
|
217 |
-
pretrained=
|
218 |
-
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth',
|
219 |
-
test_cfg=dict(mode='whole'),
|
220 |
-
train_cfg=dict(),
|
221 |
-
type='EncoderDecoder')
|
222 |
-
norm_cfg = dict(requires_grad=True, type='BN')
|
223 |
-
num_stages = 3
|
224 |
-
optim_wrapper = dict(
|
225 |
-
clip_grad=dict(max_norm=1, norm_type=2),
|
226 |
-
optimizer=dict(
|
227 |
-
betas=(
|
228 |
-
0.9,
|
229 |
-
0.999,
|
230 |
-
), lr=6e-05, type='AdamW', weight_decay=0.0005),
|
231 |
-
paramwise_cfg=dict(
|
232 |
-
custom_keys=dict(
|
233 |
-
absolute_pos_embed=dict(decay_mult=0.0),
|
234 |
-
norm=dict(decay_mult=0.0),
|
235 |
-
relative_position_bias_table=dict(decay_mult=0.0))),
|
236 |
-
type='OptimWrapper')
|
237 |
-
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
238 |
-
param_scheduler = [
|
239 |
-
dict(
|
240 |
-
begin=0, by_epoch=False, end=1000, start_factor=0.001,
|
241 |
-
type='LinearLR'),
|
242 |
-
dict(
|
243 |
-
begin=1000,
|
244 |
-
by_epoch=False,
|
245 |
-
end=80000,
|
246 |
-
milestones=[
|
247 |
-
60000,
|
248 |
-
72000,
|
249 |
-
],
|
250 |
-
type='MultiStepLR'),
|
251 |
-
]
|
252 |
-
randomness = dict(seed=0)
|
253 |
-
resume = False
|
254 |
-
test_cfg = dict(type='TestLoop')
|
255 |
-
test_dataloader = dict(
|
256 |
-
batch_size=1,
|
257 |
-
dataset=dict(
|
258 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
259 |
-
data_root='CVRPDataset/',
|
260 |
-
pipeline=[
|
261 |
-
dict(type='LoadImageFromFile'),
|
262 |
-
dict(keep_ratio=True, scale=(
|
263 |
-
2048,
|
264 |
-
1024,
|
265 |
-
), type='Resize'),
|
266 |
-
dict(type='LoadAnnotations'),
|
267 |
-
dict(type='PackSegInputs'),
|
268 |
-
],
|
269 |
-
type='CVRPDataset'),
|
270 |
-
num_workers=4,
|
271 |
-
persistent_workers=True,
|
272 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
273 |
-
test_evaluator = dict(
|
274 |
-
iou_metrics=[
|
275 |
-
'mIoU',
|
276 |
-
'mDice',
|
277 |
-
'mFscore',
|
278 |
-
], type='IoUMetric')
|
279 |
-
test_pipeline = [
|
280 |
-
dict(type='LoadImageFromFile'),
|
281 |
-
dict(keep_ratio=True, scale=(
|
282 |
-
2048,
|
283 |
-
1024,
|
284 |
-
), type='Resize'),
|
285 |
-
dict(type='LoadAnnotations'),
|
286 |
-
dict(type='PackSegInputs'),
|
287 |
-
]
|
288 |
-
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
289 |
-
train_dataloader = dict(
|
290 |
-
batch_size=2,
|
291 |
-
dataset=dict(
|
292 |
-
data_prefix=dict(
|
293 |
-
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
294 |
-
data_root='CVRPDataset/',
|
295 |
-
pipeline=[
|
296 |
-
dict(type='LoadImageFromFile'),
|
297 |
-
dict(type='LoadAnnotations'),
|
298 |
-
dict(
|
299 |
-
keep_ratio=True,
|
300 |
-
ratio_range=(
|
301 |
-
0.5,
|
302 |
-
2.0,
|
303 |
-
),
|
304 |
-
scale=(
|
305 |
-
2048,
|
306 |
-
1024,
|
307 |
-
),
|
308 |
-
type='RandomResize'),
|
309 |
-
dict(
|
310 |
-
cat_max_ratio=0.75, crop_size=(
|
311 |
-
512,
|
312 |
-
512,
|
313 |
-
), type='RandomCrop'),
|
314 |
-
dict(prob=0.5, type='RandomFlip'),
|
315 |
-
dict(type='PhotoMetricDistortion'),
|
316 |
-
dict(type='PackSegInputs'),
|
317 |
-
],
|
318 |
-
type='CVRPDataset'),
|
319 |
-
num_workers=2,
|
320 |
-
persistent_workers=True,
|
321 |
-
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
322 |
-
train_pipeline = [
|
323 |
-
dict(type='LoadImageFromFile'),
|
324 |
-
dict(type='LoadAnnotations'),
|
325 |
-
dict(
|
326 |
-
keep_ratio=True,
|
327 |
-
ratio_range=(
|
328 |
-
0.5,
|
329 |
-
2.0,
|
330 |
-
),
|
331 |
-
scale=(
|
332 |
-
2048,
|
333 |
-
1024,
|
334 |
-
),
|
335 |
-
type='RandomResize'),
|
336 |
-
dict(cat_max_ratio=0.75, crop_size=(
|
337 |
-
512,
|
338 |
-
512,
|
339 |
-
), type='RandomCrop'),
|
340 |
-
dict(prob=0.5, type='RandomFlip'),
|
341 |
-
dict(type='PhotoMetricDistortion'),
|
342 |
-
dict(type='PackSegInputs'),
|
343 |
-
]
|
344 |
-
tta_model = dict(type='SegTTAModel')
|
345 |
-
tta_pipeline = [
|
346 |
-
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
347 |
-
dict(
|
348 |
-
transforms=[
|
349 |
-
[
|
350 |
-
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
351 |
-
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
352 |
-
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
353 |
-
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
354 |
-
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
355 |
-
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
356 |
-
],
|
357 |
-
[
|
358 |
-
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
359 |
-
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
360 |
-
],
|
361 |
-
[
|
362 |
-
dict(type='LoadAnnotations'),
|
363 |
-
],
|
364 |
-
[
|
365 |
-
dict(type='PackSegInputs'),
|
366 |
-
],
|
367 |
-
],
|
368 |
-
type='TestTimeAug'),
|
369 |
-
]
|
370 |
-
val_cfg = dict(type='ValLoop')
|
371 |
-
val_dataloader = dict(
|
372 |
-
batch_size=1,
|
373 |
-
dataset=dict(
|
374 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
375 |
-
data_root='CVRPDataset/',
|
376 |
-
pipeline=[
|
377 |
-
dict(type='LoadImageFromFile'),
|
378 |
-
dict(keep_ratio=True, scale=(
|
379 |
-
2048,
|
380 |
-
1024,
|
381 |
-
), type='Resize'),
|
382 |
-
dict(type='LoadAnnotations'),
|
383 |
-
dict(type='PackSegInputs'),
|
384 |
-
],
|
385 |
-
type='CVRPDataset'),
|
386 |
-
num_workers=4,
|
387 |
-
persistent_workers=True,
|
388 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
389 |
-
val_evaluator = dict(
|
390 |
-
iou_metrics=[
|
391 |
-
'mIoU',
|
392 |
-
'mDice',
|
393 |
-
'mFscore',
|
394 |
-
], type='IoUMetric')
|
395 |
-
vis_backends = [
|
396 |
-
dict(type='LocalVisBackend'),
|
397 |
-
]
|
398 |
-
visualizer = dict(
|
399 |
-
name='visualizer',
|
400 |
-
type='SegLocalVisualizer',
|
401 |
-
vis_backends=[
|
402 |
-
dict(type='LocalVisBackend'),
|
403 |
-
])
|
404 |
-
work_dir = './work_dirs/CVRP_knet'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_configs/CVRP_mask2former.py
DELETED
@@ -1,572 +0,0 @@
|
|
1 |
-
auto_scale_lr = dict(base_batch_size=16, enable=False)
|
2 |
-
backbone_embed_multi = dict(decay_mult=0.0, lr_mult=0.1)
|
3 |
-
backbone_norm_multi = dict(decay_mult=0.0, lr_mult=0.1)
|
4 |
-
crop_size = (
|
5 |
-
512,
|
6 |
-
512,
|
7 |
-
)
|
8 |
-
custom_keys = dict({
|
9 |
-
'absolute_pos_embed':
|
10 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
11 |
-
'backbone':
|
12 |
-
dict(decay_mult=1.0, lr_mult=0.1),
|
13 |
-
'backbone.norm':
|
14 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
15 |
-
'backbone.patch_embed.norm':
|
16 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
17 |
-
'backbone.stages.0.blocks.0.norm':
|
18 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
19 |
-
'backbone.stages.0.blocks.1.norm':
|
20 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
21 |
-
'backbone.stages.0.downsample.norm':
|
22 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
23 |
-
'backbone.stages.1.blocks.0.norm':
|
24 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
25 |
-
'backbone.stages.1.blocks.1.norm':
|
26 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
27 |
-
'backbone.stages.1.downsample.norm':
|
28 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
29 |
-
'backbone.stages.2.blocks.0.norm':
|
30 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
31 |
-
'backbone.stages.2.blocks.1.norm':
|
32 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
33 |
-
'backbone.stages.2.blocks.10.norm':
|
34 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
35 |
-
'backbone.stages.2.blocks.11.norm':
|
36 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
37 |
-
'backbone.stages.2.blocks.12.norm':
|
38 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
39 |
-
'backbone.stages.2.blocks.13.norm':
|
40 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
41 |
-
'backbone.stages.2.blocks.14.norm':
|
42 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
43 |
-
'backbone.stages.2.blocks.15.norm':
|
44 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
45 |
-
'backbone.stages.2.blocks.16.norm':
|
46 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
47 |
-
'backbone.stages.2.blocks.17.norm':
|
48 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
49 |
-
'backbone.stages.2.blocks.2.norm':
|
50 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
51 |
-
'backbone.stages.2.blocks.3.norm':
|
52 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
53 |
-
'backbone.stages.2.blocks.4.norm':
|
54 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
55 |
-
'backbone.stages.2.blocks.5.norm':
|
56 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
57 |
-
'backbone.stages.2.blocks.6.norm':
|
58 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
59 |
-
'backbone.stages.2.blocks.7.norm':
|
60 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
61 |
-
'backbone.stages.2.blocks.8.norm':
|
62 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
63 |
-
'backbone.stages.2.blocks.9.norm':
|
64 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
65 |
-
'backbone.stages.2.downsample.norm':
|
66 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
67 |
-
'backbone.stages.3.blocks.0.norm':
|
68 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
69 |
-
'backbone.stages.3.blocks.1.norm':
|
70 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
71 |
-
'level_embed':
|
72 |
-
dict(decay_mult=0.0, lr_mult=1.0),
|
73 |
-
'query_embed':
|
74 |
-
dict(decay_mult=0.0, lr_mult=1.0),
|
75 |
-
'query_feat':
|
76 |
-
dict(decay_mult=0.0, lr_mult=1.0),
|
77 |
-
'relative_position_bias_table':
|
78 |
-
dict(decay_mult=0.0, lr_mult=0.1)
|
79 |
-
})
|
80 |
-
data_preprocessor = dict(
|
81 |
-
bgr_to_rgb=True,
|
82 |
-
mean=[
|
83 |
-
123.675,
|
84 |
-
116.28,
|
85 |
-
103.53,
|
86 |
-
],
|
87 |
-
pad_val=0,
|
88 |
-
seg_pad_val=255,
|
89 |
-
size=(
|
90 |
-
640,
|
91 |
-
640,
|
92 |
-
),
|
93 |
-
std=[
|
94 |
-
58.395,
|
95 |
-
57.12,
|
96 |
-
57.375,
|
97 |
-
],
|
98 |
-
type='SegDataPreProcessor')
|
99 |
-
data_root = 'CVRPDataset/'
|
100 |
-
dataset_type = 'CVRPDataset'
|
101 |
-
default_hooks = dict(
|
102 |
-
checkpoint=dict(
|
103 |
-
by_epoch=False,
|
104 |
-
interval=2500,
|
105 |
-
max_keep_ckpts=1,
|
106 |
-
save_best='mIoU',
|
107 |
-
type='CheckpointHook'),
|
108 |
-
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
109 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
110 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
111 |
-
timer=dict(type='IterTimerHook'),
|
112 |
-
visualization=dict(type='SegVisualizationHook'))
|
113 |
-
default_scope = 'mmseg'
|
114 |
-
depths = [
|
115 |
-
2,
|
116 |
-
2,
|
117 |
-
18,
|
118 |
-
2,
|
119 |
-
]
|
120 |
-
embed_multi = dict(decay_mult=0.0, lr_mult=1.0)
|
121 |
-
env_cfg = dict(
|
122 |
-
cudnn_benchmark=True,
|
123 |
-
dist_cfg=dict(backend='nccl'),
|
124 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
125 |
-
img_ratios = [
|
126 |
-
0.5,
|
127 |
-
0.75,
|
128 |
-
1.0,
|
129 |
-
1.25,
|
130 |
-
1.5,
|
131 |
-
1.75,
|
132 |
-
]
|
133 |
-
load_from = None
|
134 |
-
log_level = 'INFO'
|
135 |
-
log_processor = dict(by_epoch=False)
|
136 |
-
model = dict(
|
137 |
-
backbone=dict(
|
138 |
-
attn_drop_rate=0.0,
|
139 |
-
depths=[
|
140 |
-
2,
|
141 |
-
2,
|
142 |
-
18,
|
143 |
-
2,
|
144 |
-
],
|
145 |
-
drop_path_rate=0.3,
|
146 |
-
drop_rate=0.0,
|
147 |
-
embed_dims=192,
|
148 |
-
frozen_stages=-1,
|
149 |
-
init_cfg=dict(
|
150 |
-
checkpoint=
|
151 |
-
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth',
|
152 |
-
type='Pretrained'),
|
153 |
-
mlp_ratio=4,
|
154 |
-
num_heads=[
|
155 |
-
6,
|
156 |
-
12,
|
157 |
-
24,
|
158 |
-
48,
|
159 |
-
],
|
160 |
-
out_indices=(
|
161 |
-
0,
|
162 |
-
1,
|
163 |
-
2,
|
164 |
-
3,
|
165 |
-
),
|
166 |
-
patch_norm=True,
|
167 |
-
pretrain_img_size=384,
|
168 |
-
qk_scale=None,
|
169 |
-
qkv_bias=True,
|
170 |
-
type='SwinTransformer',
|
171 |
-
window_size=12,
|
172 |
-
with_cp=False),
|
173 |
-
data_preprocessor=dict(
|
174 |
-
bgr_to_rgb=True,
|
175 |
-
mean=[
|
176 |
-
123.675,
|
177 |
-
116.28,
|
178 |
-
103.53,
|
179 |
-
],
|
180 |
-
pad_val=0,
|
181 |
-
seg_pad_val=255,
|
182 |
-
size=(
|
183 |
-
512,
|
184 |
-
512,
|
185 |
-
),
|
186 |
-
std=[
|
187 |
-
58.395,
|
188 |
-
57.12,
|
189 |
-
57.375,
|
190 |
-
],
|
191 |
-
type='SegDataPreProcessor'),
|
192 |
-
decode_head=dict(
|
193 |
-
align_corners=False,
|
194 |
-
enforce_decoder_input_project=False,
|
195 |
-
feat_channels=256,
|
196 |
-
in_channels=[
|
197 |
-
192,
|
198 |
-
384,
|
199 |
-
768,
|
200 |
-
1536,
|
201 |
-
],
|
202 |
-
loss_cls=dict(
|
203 |
-
class_weight=[
|
204 |
-
1.0,
|
205 |
-
1.0,
|
206 |
-
0.1,
|
207 |
-
],
|
208 |
-
loss_weight=2.0,
|
209 |
-
reduction='mean',
|
210 |
-
type='mmdet.CrossEntropyLoss',
|
211 |
-
use_sigmoid=False),
|
212 |
-
loss_dice=dict(
|
213 |
-
activate=True,
|
214 |
-
eps=1.0,
|
215 |
-
loss_weight=5.0,
|
216 |
-
naive_dice=True,
|
217 |
-
reduction='mean',
|
218 |
-
type='mmdet.DiceLoss',
|
219 |
-
use_sigmoid=True),
|
220 |
-
loss_mask=dict(
|
221 |
-
loss_weight=5.0,
|
222 |
-
reduction='mean',
|
223 |
-
type='mmdet.CrossEntropyLoss',
|
224 |
-
use_sigmoid=True),
|
225 |
-
num_classes=2,
|
226 |
-
num_queries=100,
|
227 |
-
num_transformer_feat_level=3,
|
228 |
-
out_channels=256,
|
229 |
-
pixel_decoder=dict(
|
230 |
-
act_cfg=dict(type='ReLU'),
|
231 |
-
encoder=dict(
|
232 |
-
init_cfg=None,
|
233 |
-
layer_cfg=dict(
|
234 |
-
ffn_cfg=dict(
|
235 |
-
act_cfg=dict(inplace=True, type='ReLU'),
|
236 |
-
embed_dims=256,
|
237 |
-
feedforward_channels=1024,
|
238 |
-
ffn_drop=0.0,
|
239 |
-
num_fcs=2),
|
240 |
-
self_attn_cfg=dict(
|
241 |
-
batch_first=True,
|
242 |
-
dropout=0.0,
|
243 |
-
embed_dims=256,
|
244 |
-
im2col_step=64,
|
245 |
-
init_cfg=None,
|
246 |
-
norm_cfg=None,
|
247 |
-
num_heads=8,
|
248 |
-
num_levels=3,
|
249 |
-
num_points=4)),
|
250 |
-
num_layers=6),
|
251 |
-
init_cfg=None,
|
252 |
-
norm_cfg=dict(num_groups=32, type='GN'),
|
253 |
-
num_outs=3,
|
254 |
-
positional_encoding=dict(normalize=True, num_feats=128),
|
255 |
-
type='mmdet.MSDeformAttnPixelDecoder'),
|
256 |
-
positional_encoding=dict(normalize=True, num_feats=128),
|
257 |
-
strides=[
|
258 |
-
4,
|
259 |
-
8,
|
260 |
-
16,
|
261 |
-
32,
|
262 |
-
],
|
263 |
-
train_cfg=dict(
|
264 |
-
assigner=dict(
|
265 |
-
match_costs=[
|
266 |
-
dict(type='mmdet.ClassificationCost', weight=2.0),
|
267 |
-
dict(
|
268 |
-
type='mmdet.CrossEntropyLossCost',
|
269 |
-
use_sigmoid=True,
|
270 |
-
weight=5.0),
|
271 |
-
dict(
|
272 |
-
eps=1.0,
|
273 |
-
pred_act=True,
|
274 |
-
type='mmdet.DiceCost',
|
275 |
-
weight=5.0),
|
276 |
-
],
|
277 |
-
type='mmdet.HungarianAssigner'),
|
278 |
-
importance_sample_ratio=0.75,
|
279 |
-
num_points=12544,
|
280 |
-
oversample_ratio=3.0,
|
281 |
-
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
282 |
-
transformer_decoder=dict(
|
283 |
-
init_cfg=None,
|
284 |
-
layer_cfg=dict(
|
285 |
-
cross_attn_cfg=dict(
|
286 |
-
attn_drop=0.0,
|
287 |
-
batch_first=True,
|
288 |
-
dropout_layer=None,
|
289 |
-
embed_dims=256,
|
290 |
-
num_heads=8,
|
291 |
-
proj_drop=0.0),
|
292 |
-
ffn_cfg=dict(
|
293 |
-
act_cfg=dict(inplace=True, type='ReLU'),
|
294 |
-
add_identity=True,
|
295 |
-
dropout_layer=None,
|
296 |
-
embed_dims=256,
|
297 |
-
feedforward_channels=2048,
|
298 |
-
ffn_drop=0.0,
|
299 |
-
num_fcs=2),
|
300 |
-
self_attn_cfg=dict(
|
301 |
-
attn_drop=0.0,
|
302 |
-
batch_first=True,
|
303 |
-
dropout_layer=None,
|
304 |
-
embed_dims=256,
|
305 |
-
num_heads=8,
|
306 |
-
proj_drop=0.0)),
|
307 |
-
num_layers=9,
|
308 |
-
return_intermediate=True),
|
309 |
-
type='Mask2FormerHead'),
|
310 |
-
test_cfg=dict(mode='whole'),
|
311 |
-
train_cfg=dict(),
|
312 |
-
type='EncoderDecoder')
|
313 |
-
norm_cfg = dict(requires_grad=True, type='BN')
|
314 |
-
num_classes = 150
|
315 |
-
optim_wrapper = dict(
|
316 |
-
clip_grad=dict(max_norm=0.01, norm_type=2),
|
317 |
-
optimizer=dict(
|
318 |
-
betas=(
|
319 |
-
0.9,
|
320 |
-
0.999,
|
321 |
-
),
|
322 |
-
eps=1e-08,
|
323 |
-
lr=0.0001,
|
324 |
-
type='AdamW',
|
325 |
-
weight_decay=0.05),
|
326 |
-
paramwise_cfg=dict(
|
327 |
-
custom_keys=dict({
|
328 |
-
'absolute_pos_embed':
|
329 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
330 |
-
'backbone':
|
331 |
-
dict(decay_mult=1.0, lr_mult=0.1),
|
332 |
-
'backbone.norm':
|
333 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
334 |
-
'backbone.patch_embed.norm':
|
335 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
336 |
-
'backbone.stages.0.blocks.0.norm':
|
337 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
338 |
-
'backbone.stages.0.blocks.1.norm':
|
339 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
340 |
-
'backbone.stages.0.downsample.norm':
|
341 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
342 |
-
'backbone.stages.1.blocks.0.norm':
|
343 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
344 |
-
'backbone.stages.1.blocks.1.norm':
|
345 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
346 |
-
'backbone.stages.1.downsample.norm':
|
347 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
348 |
-
'backbone.stages.2.blocks.0.norm':
|
349 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
350 |
-
'backbone.stages.2.blocks.1.norm':
|
351 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
352 |
-
'backbone.stages.2.blocks.10.norm':
|
353 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
354 |
-
'backbone.stages.2.blocks.11.norm':
|
355 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
356 |
-
'backbone.stages.2.blocks.12.norm':
|
357 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
358 |
-
'backbone.stages.2.blocks.13.norm':
|
359 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
360 |
-
'backbone.stages.2.blocks.14.norm':
|
361 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
362 |
-
'backbone.stages.2.blocks.15.norm':
|
363 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
364 |
-
'backbone.stages.2.blocks.16.norm':
|
365 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
366 |
-
'backbone.stages.2.blocks.17.norm':
|
367 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
368 |
-
'backbone.stages.2.blocks.2.norm':
|
369 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
370 |
-
'backbone.stages.2.blocks.3.norm':
|
371 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
372 |
-
'backbone.stages.2.blocks.4.norm':
|
373 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
374 |
-
'backbone.stages.2.blocks.5.norm':
|
375 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
376 |
-
'backbone.stages.2.blocks.6.norm':
|
377 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
378 |
-
'backbone.stages.2.blocks.7.norm':
|
379 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
380 |
-
'backbone.stages.2.blocks.8.norm':
|
381 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
382 |
-
'backbone.stages.2.blocks.9.norm':
|
383 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
384 |
-
'backbone.stages.2.downsample.norm':
|
385 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
386 |
-
'backbone.stages.3.blocks.0.norm':
|
387 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
388 |
-
'backbone.stages.3.blocks.1.norm':
|
389 |
-
dict(decay_mult=0.0, lr_mult=0.1),
|
390 |
-
'level_embed':
|
391 |
-
dict(decay_mult=0.0, lr_mult=1.0),
|
392 |
-
'query_embed':
|
393 |
-
dict(decay_mult=0.0, lr_mult=1.0),
|
394 |
-
'query_feat':
|
395 |
-
dict(decay_mult=0.0, lr_mult=1.0),
|
396 |
-
'relative_position_bias_table':
|
397 |
-
dict(decay_mult=0.0, lr_mult=0.1)
|
398 |
-
}),
|
399 |
-
norm_decay_mult=0.0),
|
400 |
-
type='OptimWrapper')
|
401 |
-
optimizer = dict(
|
402 |
-
betas=(
|
403 |
-
0.9,
|
404 |
-
0.999,
|
405 |
-
),
|
406 |
-
eps=1e-08,
|
407 |
-
lr=0.0001,
|
408 |
-
type='AdamW',
|
409 |
-
weight_decay=0.05)
|
410 |
-
param_scheduler = [
|
411 |
-
dict(
|
412 |
-
begin=0,
|
413 |
-
by_epoch=False,
|
414 |
-
end=160000,
|
415 |
-
eta_min=0,
|
416 |
-
power=0.9,
|
417 |
-
type='PolyLR'),
|
418 |
-
]
|
419 |
-
pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth'
|
420 |
-
randomness = dict(seed=0)
|
421 |
-
resume = False
|
422 |
-
test_cfg = dict(type='TestLoop')
|
423 |
-
test_dataloader = dict(
|
424 |
-
batch_size=1,
|
425 |
-
dataset=dict(
|
426 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
427 |
-
data_root='CVRPDataset/',
|
428 |
-
pipeline=[
|
429 |
-
dict(type='LoadImageFromFile'),
|
430 |
-
dict(keep_ratio=True, scale=(
|
431 |
-
2048,
|
432 |
-
1024,
|
433 |
-
), type='Resize'),
|
434 |
-
dict(type='LoadAnnotations'),
|
435 |
-
dict(type='PackSegInputs'),
|
436 |
-
],
|
437 |
-
type='CVRPDataset'),
|
438 |
-
num_workers=4,
|
439 |
-
persistent_workers=True,
|
440 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
441 |
-
test_evaluator = dict(
|
442 |
-
iou_metrics=[
|
443 |
-
'mIoU',
|
444 |
-
'mDice',
|
445 |
-
'mFscore',
|
446 |
-
], type='IoUMetric')
|
447 |
-
test_pipeline = [
|
448 |
-
dict(type='LoadImageFromFile'),
|
449 |
-
dict(keep_ratio=True, scale=(
|
450 |
-
2048,
|
451 |
-
1024,
|
452 |
-
), type='Resize'),
|
453 |
-
dict(type='LoadAnnotations'),
|
454 |
-
dict(type='PackSegInputs'),
|
455 |
-
]
|
456 |
-
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
457 |
-
train_dataloader = dict(
|
458 |
-
batch_size=2,
|
459 |
-
dataset=dict(
|
460 |
-
data_prefix=dict(
|
461 |
-
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
462 |
-
data_root='CVRPDataset/',
|
463 |
-
pipeline=[
|
464 |
-
dict(type='LoadImageFromFile'),
|
465 |
-
dict(type='LoadAnnotations'),
|
466 |
-
dict(
|
467 |
-
keep_ratio=True,
|
468 |
-
ratio_range=(
|
469 |
-
0.5,
|
470 |
-
2.0,
|
471 |
-
),
|
472 |
-
scale=(
|
473 |
-
2048,
|
474 |
-
1024,
|
475 |
-
),
|
476 |
-
type='RandomResize'),
|
477 |
-
dict(
|
478 |
-
cat_max_ratio=0.75, crop_size=(
|
479 |
-
512,
|
480 |
-
512,
|
481 |
-
), type='RandomCrop'),
|
482 |
-
dict(prob=0.5, type='RandomFlip'),
|
483 |
-
dict(type='PhotoMetricDistortion'),
|
484 |
-
dict(type='PackSegInputs'),
|
485 |
-
],
|
486 |
-
type='CVRPDataset'),
|
487 |
-
num_workers=2,
|
488 |
-
persistent_workers=True,
|
489 |
-
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
490 |
-
train_pipeline = [
|
491 |
-
dict(type='LoadImageFromFile'),
|
492 |
-
dict(type='LoadAnnotations'),
|
493 |
-
dict(
|
494 |
-
keep_ratio=True,
|
495 |
-
ratio_range=(
|
496 |
-
0.5,
|
497 |
-
2.0,
|
498 |
-
),
|
499 |
-
scale=(
|
500 |
-
2048,
|
501 |
-
1024,
|
502 |
-
),
|
503 |
-
type='RandomResize'),
|
504 |
-
dict(cat_max_ratio=0.75, crop_size=(
|
505 |
-
512,
|
506 |
-
512,
|
507 |
-
), type='RandomCrop'),
|
508 |
-
dict(prob=0.5, type='RandomFlip'),
|
509 |
-
dict(type='PhotoMetricDistortion'),
|
510 |
-
dict(type='PackSegInputs'),
|
511 |
-
]
|
512 |
-
tta_model = dict(type='SegTTAModel')
|
513 |
-
tta_pipeline = [
|
514 |
-
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
515 |
-
dict(
|
516 |
-
transforms=[
|
517 |
-
[
|
518 |
-
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
519 |
-
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
520 |
-
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
521 |
-
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
522 |
-
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
523 |
-
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
524 |
-
],
|
525 |
-
[
|
526 |
-
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
527 |
-
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
528 |
-
],
|
529 |
-
[
|
530 |
-
dict(type='LoadAnnotations'),
|
531 |
-
],
|
532 |
-
[
|
533 |
-
dict(type='PackSegInputs'),
|
534 |
-
],
|
535 |
-
],
|
536 |
-
type='TestTimeAug'),
|
537 |
-
]
|
538 |
-
val_cfg = dict(type='ValLoop')
|
539 |
-
val_dataloader = dict(
|
540 |
-
batch_size=1,
|
541 |
-
dataset=dict(
|
542 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
543 |
-
data_root='CVRPDataset/',
|
544 |
-
pipeline=[
|
545 |
-
dict(type='LoadImageFromFile'),
|
546 |
-
dict(keep_ratio=True, scale=(
|
547 |
-
2048,
|
548 |
-
1024,
|
549 |
-
), type='Resize'),
|
550 |
-
dict(type='LoadAnnotations'),
|
551 |
-
dict(type='PackSegInputs'),
|
552 |
-
],
|
553 |
-
type='CVRPDataset'),
|
554 |
-
num_workers=4,
|
555 |
-
persistent_workers=True,
|
556 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
557 |
-
val_evaluator = dict(
|
558 |
-
iou_metrics=[
|
559 |
-
'mIoU',
|
560 |
-
'mDice',
|
561 |
-
'mFscore',
|
562 |
-
], type='IoUMetric')
|
563 |
-
vis_backends = [
|
564 |
-
dict(type='LocalVisBackend'),
|
565 |
-
]
|
566 |
-
visualizer = dict(
|
567 |
-
name='visualizer',
|
568 |
-
type='SegLocalVisualizer',
|
569 |
-
vis_backends=[
|
570 |
-
dict(type='LocalVisBackend'),
|
571 |
-
])
|
572 |
-
work_dir = './work_dirs/CVRP_mask2former'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_configs/CVRP_segformer.py
DELETED
@@ -1,322 +0,0 @@
|
|
1 |
-
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth'
|
2 |
-
crop_size = (
|
3 |
-
512,
|
4 |
-
512,
|
5 |
-
)
|
6 |
-
data_preprocessor = dict(
|
7 |
-
bgr_to_rgb=True,
|
8 |
-
mean=[
|
9 |
-
123.675,
|
10 |
-
116.28,
|
11 |
-
103.53,
|
12 |
-
],
|
13 |
-
pad_val=0,
|
14 |
-
seg_pad_val=255,
|
15 |
-
size=(
|
16 |
-
512,
|
17 |
-
512,
|
18 |
-
),
|
19 |
-
std=[
|
20 |
-
58.395,
|
21 |
-
57.12,
|
22 |
-
57.375,
|
23 |
-
],
|
24 |
-
type='SegDataPreProcessor')
|
25 |
-
data_root = 'CVRPDataset/'
|
26 |
-
dataset_type = 'CVRPDataset'
|
27 |
-
default_hooks = dict(
|
28 |
-
checkpoint=dict(
|
29 |
-
by_epoch=False,
|
30 |
-
interval=2500,
|
31 |
-
max_keep_ckpts=1,
|
32 |
-
save_best='mIoU',
|
33 |
-
type='CheckpointHook'),
|
34 |
-
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
35 |
-
param_scheduler=dict(type='ParamSchedulerHook'),
|
36 |
-
sampler_seed=dict(type='DistSamplerSeedHook'),
|
37 |
-
timer=dict(type='IterTimerHook'),
|
38 |
-
visualization=dict(type='SegVisualizationHook'))
|
39 |
-
default_scope = 'mmseg'
|
40 |
-
env_cfg = dict(
|
41 |
-
cudnn_benchmark=True,
|
42 |
-
dist_cfg=dict(backend='nccl'),
|
43 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
44 |
-
img_ratios = [
|
45 |
-
0.5,
|
46 |
-
0.75,
|
47 |
-
1.0,
|
48 |
-
1.25,
|
49 |
-
1.5,
|
50 |
-
1.75,
|
51 |
-
]
|
52 |
-
load_from = None
|
53 |
-
log_level = 'INFO'
|
54 |
-
log_processor = dict(by_epoch=False)
|
55 |
-
model = dict(
|
56 |
-
backbone=dict(
|
57 |
-
attn_drop_rate=0.0,
|
58 |
-
drop_path_rate=0.1,
|
59 |
-
drop_rate=0.0,
|
60 |
-
embed_dims=64,
|
61 |
-
in_channels=3,
|
62 |
-
init_cfg=dict(
|
63 |
-
checkpoint=
|
64 |
-
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth',
|
65 |
-
type='Pretrained'),
|
66 |
-
mlp_ratio=4,
|
67 |
-
num_heads=[
|
68 |
-
1,
|
69 |
-
2,
|
70 |
-
5,
|
71 |
-
8,
|
72 |
-
],
|
73 |
-
num_layers=[
|
74 |
-
3,
|
75 |
-
6,
|
76 |
-
40,
|
77 |
-
3,
|
78 |
-
],
|
79 |
-
num_stages=4,
|
80 |
-
out_indices=(
|
81 |
-
0,
|
82 |
-
1,
|
83 |
-
2,
|
84 |
-
3,
|
85 |
-
),
|
86 |
-
patch_sizes=[
|
87 |
-
7,
|
88 |
-
3,
|
89 |
-
3,
|
90 |
-
3,
|
91 |
-
],
|
92 |
-
qkv_bias=True,
|
93 |
-
sr_ratios=[
|
94 |
-
8,
|
95 |
-
4,
|
96 |
-
2,
|
97 |
-
1,
|
98 |
-
],
|
99 |
-
type='MixVisionTransformer'),
|
100 |
-
data_preprocessor=dict(
|
101 |
-
bgr_to_rgb=True,
|
102 |
-
mean=[
|
103 |
-
123.675,
|
104 |
-
116.28,
|
105 |
-
103.53,
|
106 |
-
],
|
107 |
-
pad_val=0,
|
108 |
-
seg_pad_val=255,
|
109 |
-
size=(
|
110 |
-
512,
|
111 |
-
512,
|
112 |
-
),
|
113 |
-
std=[
|
114 |
-
58.395,
|
115 |
-
57.12,
|
116 |
-
57.375,
|
117 |
-
],
|
118 |
-
type='SegDataPreProcessor'),
|
119 |
-
decode_head=dict(
|
120 |
-
align_corners=False,
|
121 |
-
channels=256,
|
122 |
-
dropout_ratio=0.1,
|
123 |
-
in_channels=[
|
124 |
-
64,
|
125 |
-
128,
|
126 |
-
320,
|
127 |
-
512,
|
128 |
-
],
|
129 |
-
in_index=[
|
130 |
-
0,
|
131 |
-
1,
|
132 |
-
2,
|
133 |
-
3,
|
134 |
-
],
|
135 |
-
loss_decode=dict(
|
136 |
-
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
137 |
-
norm_cfg=dict(requires_grad=True, type='BN'),
|
138 |
-
num_classes=2,
|
139 |
-
type='SegformerHead'),
|
140 |
-
pretrained=None,
|
141 |
-
test_cfg=dict(mode='whole'),
|
142 |
-
train_cfg=dict(),
|
143 |
-
type='EncoderDecoder')
|
144 |
-
norm_cfg = dict(requires_grad=True, type='BN')
|
145 |
-
optim_wrapper = dict(
|
146 |
-
optimizer=dict(
|
147 |
-
betas=(
|
148 |
-
0.9,
|
149 |
-
0.999,
|
150 |
-
), lr=6e-05, type='AdamW', weight_decay=0.01),
|
151 |
-
paramwise_cfg=dict(
|
152 |
-
custom_keys=dict(
|
153 |
-
head=dict(lr_mult=10.0),
|
154 |
-
norm=dict(decay_mult=0.0),
|
155 |
-
pos_block=dict(decay_mult=0.0))),
|
156 |
-
type='OptimWrapper')
|
157 |
-
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
158 |
-
param_scheduler = [
|
159 |
-
dict(
|
160 |
-
begin=0, by_epoch=False, end=1500, start_factor=1e-06,
|
161 |
-
type='LinearLR'),
|
162 |
-
dict(
|
163 |
-
begin=1500,
|
164 |
-
by_epoch=False,
|
165 |
-
end=160000,
|
166 |
-
eta_min=0.0,
|
167 |
-
power=1.0,
|
168 |
-
type='PolyLR'),
|
169 |
-
]
|
170 |
-
randomness = dict(seed=0)
|
171 |
-
resume = False
|
172 |
-
test_cfg = dict(type='TestLoop')
|
173 |
-
test_dataloader = dict(
|
174 |
-
batch_size=1,
|
175 |
-
dataset=dict(
|
176 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
177 |
-
data_root='CVRPDataset/',
|
178 |
-
pipeline=[
|
179 |
-
dict(type='LoadImageFromFile'),
|
180 |
-
dict(keep_ratio=True, scale=(
|
181 |
-
2048,
|
182 |
-
1024,
|
183 |
-
), type='Resize'),
|
184 |
-
dict(type='LoadAnnotations'),
|
185 |
-
dict(type='PackSegInputs'),
|
186 |
-
],
|
187 |
-
type='CVRPDataset'),
|
188 |
-
num_workers=4,
|
189 |
-
persistent_workers=True,
|
190 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
191 |
-
test_evaluator = dict(
|
192 |
-
iou_metrics=[
|
193 |
-
'mIoU',
|
194 |
-
'mDice',
|
195 |
-
'mFscore',
|
196 |
-
], type='IoUMetric')
|
197 |
-
test_pipeline = [
|
198 |
-
dict(type='LoadImageFromFile'),
|
199 |
-
dict(keep_ratio=True, scale=(
|
200 |
-
2048,
|
201 |
-
1024,
|
202 |
-
), type='Resize'),
|
203 |
-
dict(type='LoadAnnotations'),
|
204 |
-
dict(type='PackSegInputs'),
|
205 |
-
]
|
206 |
-
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
207 |
-
train_dataloader = dict(
|
208 |
-
batch_size=2,
|
209 |
-
dataset=dict(
|
210 |
-
data_prefix=dict(
|
211 |
-
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
212 |
-
data_root='CVRPDataset/',
|
213 |
-
pipeline=[
|
214 |
-
dict(type='LoadImageFromFile'),
|
215 |
-
dict(type='LoadAnnotations'),
|
216 |
-
dict(
|
217 |
-
keep_ratio=True,
|
218 |
-
ratio_range=(
|
219 |
-
0.5,
|
220 |
-
2.0,
|
221 |
-
),
|
222 |
-
scale=(
|
223 |
-
2048,
|
224 |
-
1024,
|
225 |
-
),
|
226 |
-
type='RandomResize'),
|
227 |
-
dict(
|
228 |
-
cat_max_ratio=0.75, crop_size=(
|
229 |
-
512,
|
230 |
-
512,
|
231 |
-
), type='RandomCrop'),
|
232 |
-
dict(prob=0.5, type='RandomFlip'),
|
233 |
-
dict(type='PhotoMetricDistortion'),
|
234 |
-
dict(type='PackSegInputs'),
|
235 |
-
],
|
236 |
-
type='CVRPDataset'),
|
237 |
-
num_workers=2,
|
238 |
-
persistent_workers=True,
|
239 |
-
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
240 |
-
train_pipeline = [
|
241 |
-
dict(type='LoadImageFromFile'),
|
242 |
-
dict(type='LoadAnnotations'),
|
243 |
-
dict(
|
244 |
-
keep_ratio=True,
|
245 |
-
ratio_range=(
|
246 |
-
0.5,
|
247 |
-
2.0,
|
248 |
-
),
|
249 |
-
scale=(
|
250 |
-
2048,
|
251 |
-
1024,
|
252 |
-
),
|
253 |
-
type='RandomResize'),
|
254 |
-
dict(cat_max_ratio=0.75, crop_size=(
|
255 |
-
512,
|
256 |
-
512,
|
257 |
-
), type='RandomCrop'),
|
258 |
-
dict(prob=0.5, type='RandomFlip'),
|
259 |
-
dict(type='PhotoMetricDistortion'),
|
260 |
-
dict(type='PackSegInputs'),
|
261 |
-
]
|
262 |
-
tta_model = dict(type='SegTTAModel')
|
263 |
-
tta_pipeline = [
|
264 |
-
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
265 |
-
dict(
|
266 |
-
transforms=[
|
267 |
-
[
|
268 |
-
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
269 |
-
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
270 |
-
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
271 |
-
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
272 |
-
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
273 |
-
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
274 |
-
],
|
275 |
-
[
|
276 |
-
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
277 |
-
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
278 |
-
],
|
279 |
-
[
|
280 |
-
dict(type='LoadAnnotations'),
|
281 |
-
],
|
282 |
-
[
|
283 |
-
dict(type='PackSegInputs'),
|
284 |
-
],
|
285 |
-
],
|
286 |
-
type='TestTimeAug'),
|
287 |
-
]
|
288 |
-
val_cfg = dict(type='ValLoop')
|
289 |
-
val_dataloader = dict(
|
290 |
-
batch_size=1,
|
291 |
-
dataset=dict(
|
292 |
-
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
293 |
-
data_root='CVRPDataset/',
|
294 |
-
pipeline=[
|
295 |
-
dict(type='LoadImageFromFile'),
|
296 |
-
dict(keep_ratio=True, scale=(
|
297 |
-
2048,
|
298 |
-
1024,
|
299 |
-
), type='Resize'),
|
300 |
-
dict(type='LoadAnnotations'),
|
301 |
-
dict(type='PackSegInputs'),
|
302 |
-
],
|
303 |
-
type='CVRPDataset'),
|
304 |
-
num_workers=4,
|
305 |
-
persistent_workers=True,
|
306 |
-
sampler=dict(shuffle=False, type='DefaultSampler'))
|
307 |
-
val_evaluator = dict(
|
308 |
-
iou_metrics=[
|
309 |
-
'mIoU',
|
310 |
-
'mDice',
|
311 |
-
'mFscore',
|
312 |
-
], type='IoUMetric')
|
313 |
-
vis_backends = [
|
314 |
-
dict(type='LocalVisBackend'),
|
315 |
-
]
|
316 |
-
visualizer = dict(
|
317 |
-
name='visualizer',
|
318 |
-
type='SegLocalVisualizer',
|
319 |
-
vis_backends=[
|
320 |
-
dict(type='LocalVisBackend'),
|
321 |
-
])
|
322 |
-
work_dir = './work_dirs/CVRP_segformer'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|