import gradio as gr import numpy as np import cv2 from mmseg.apis import init_model, inference_model import torch def process_single_img(img_bgr, model_name): print(type(img_bgr)) palette = [ ['background', [0, 0, 0]], ['red', [255, 0, 0]] ] palette_dict = {} for idx, each in enumerate(palette): palette_dict[idx] = each[1] if model_name == 'Mask2Former': config_file = 'CVRP_configs/CVRP_mask2former.py' checkpoint_file = 'checkpoint/Mask2Former.pth' elif model_name == 'KNet': config_file = 'CVRP_configs/CVRP_knet.py' checkpoint_file = 'checkpoint/KNet.pth' elif model_name == 'DeepLabV3+': config_file = 'CVRP_configs/CVRP_deeplabv3plus.py' checkpoint_file = 'checkpoint/DeepLabV3plus.pth' elif model_name == 'Segformer': config_file = 'CVRP_configs/CVRP_segformer.py' checkpoint_file = 'checkpoint/Segformer.pth' else: return None, None device = 'cuda:0' model = init_model(config_file, checkpoint_file, device=device) result = inference_model(model, img_bgr) pred_mask = result.pred_sem_seg.data[0].cpu().numpy() pred_mask_bgr = np.zeros((pred_mask.shape[0], pred_mask.shape[1], 3)) for idx in palette_dict.keys(): pred_mask_bgr[np.where(pred_mask == idx)] = palette_dict[idx] pred_mask_bgr = pred_mask_bgr.astype('uint8') pred_viz = cv2.addWeighted(img_bgr, 1, pred_mask_bgr, 1, 0) torch.cuda.empty_cache() return pred_viz, pred_mask_bgr def run_segmentation(image_input, model_select): if model_select not in ["Mask2Former", "KNet", "DeepLabV3+", "Segformer"]: return None, None, [("No implementa", "Error"), ("", "")] else: color_img, binary_img = process_single_img(image_input, model_select) return color_img, binary_img, [("", ""), ("Segmentation Finished", "normal")] title = """

CVRP

""" # 设置SAM参数 with gr.Blocks() as iface: gr.Markdown(title) with gr.Row(): with gr.Column(): image_input = gr.Image(interactive=True, visible=True, label="Input Image", height=360) with gr.Row(): model_select = gr.Dropdown(choices=["Mask2Former", "KNet", "DeepLabV3+", "Segformer"], value="Mask2Former", label="Select model", visible=True) run_button = gr.Button(value="Run", interactive=True, visible=True) with gr.Row(): gr.Examples( examples=[['assets/T42_1220.jpg', 'Mask2Former'], ['assets/T99_799.jpg', 'Mask2Former'], ['assets/T92_10336.jpg', 'Mask2Former']], inputs=[image_input, model_select]) with gr.Column(): color_output = gr.Image(interactive=False, visible=True, label="Color Image", height=360) binary_output = gr.Image(interactive=False, visible=True, label="Binary Image", height=360) run_status = gr.HighlightedText( value=[("Text", "Error"), ("to be", "Label 2"), ("highlighted", "Label 3")], visible=True) run_button.click( fn=run_segmentation, inputs=[image_input, model_select], outputs=[color_output, binary_output, run_status] ) iface.launch(debug=True, server_port=6006, server_name="127.0.0.1")