import gradio as gr import numpy as np import cv2 from mmseg.apis import init_model, inference_model import torch def process_single_img(img_bgr, model_name): print(type(img_bgr)) palette = [ ['background', [0, 0, 0]], ['red', [255, 0, 0]] ] palette_dict = {} for idx, each in enumerate(palette): palette_dict[idx] = each[1] if model_name == 'Mask2Former': config_file = 'CVRP_configs/CVRP_mask2former.py' checkpoint_file = 'checkpoint/Mask2Former.pth' elif model_name == 'KNet': config_file = 'CVRP_configs/CVRP_knet.py' checkpoint_file = 'checkpoint/KNet.pth' elif model_name == 'DeepLabV3+': config_file = 'CVRP_configs/CVRP_deeplabv3plus.py' checkpoint_file = 'checkpoint/DeepLabV3plus.pth' elif model_name == 'Segformer': config_file = 'CVRP_configs/CVRP_segformer.py' checkpoint_file = 'checkpoint/Segformer.pth' else: return None, None device = 'cuda:0' model = init_model(config_file, checkpoint_file, device=device) result = inference_model(model, img_bgr) pred_mask = result.pred_sem_seg.data[0].cpu().numpy() pred_mask_bgr = np.zeros((pred_mask.shape[0], pred_mask.shape[1], 3)) for idx in palette_dict.keys(): pred_mask_bgr[np.where(pred_mask == idx)] = palette_dict[idx] pred_mask_bgr = pred_mask_bgr.astype('uint8') pred_viz = cv2.addWeighted(img_bgr, 1, pred_mask_bgr, 1, 0) torch.cuda.empty_cache() return pred_viz, pred_mask_bgr def run_segmentation(image_input, model_select): if model_select not in ["Mask2Former", "KNet", "DeepLabV3+", "Segformer"]: return None, None, [("No implementa", "Error"), ("", "")] else: color_img, binary_img = process_single_img(image_input, model_select) return color_img, binary_img, [("", ""), ("Segmentation Finished", "normal")] title = """