Update model.py
Browse files
model.py
CHANGED
@@ -1,15 +1,136 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
2 |
from config import Config
|
|
|
|
|
|
|
3 |
|
4 |
class CyberAttackDetectionModel:
|
5 |
def __init__(self):
|
|
|
6 |
self.tokenizer = AutoTokenizer.from_pretrained(Config.TOKENIZER_NAME)
|
7 |
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
|
8 |
self.model.to(Config.DEVICE)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def predict(self, prompt):
|
11 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=Config.MAX_LENGTH)
|
12 |
inputs = {key: value.to(Config.DEVICE) for key, value in inputs.items()}
|
13 |
|
14 |
outputs = self.model.generate(**inputs, max_length=Config.MAX_LENGTH)
|
15 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
3 |
from config import Config
|
4 |
+
import torch
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import pandas as pd
|
7 |
|
8 |
class CyberAttackDetectionModel:
|
9 |
def __init__(self):
|
10 |
+
# Initialize tokenizer and model
|
11 |
self.tokenizer = AutoTokenizer.from_pretrained(Config.TOKENIZER_NAME)
|
12 |
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
|
13 |
self.model.to(Config.DEVICE)
|
14 |
|
15 |
+
def preprocess_data(self, dataset):
|
16 |
+
"""
|
17 |
+
Preprocess the raw text dataset by cleaning and tokenizing.
|
18 |
+
"""
|
19 |
+
# Clean the dataset (basic text normalization, removing unwanted characters)
|
20 |
+
def clean_text(text):
|
21 |
+
# Implement custom cleaning function based on dataset's characteristics
|
22 |
+
# E.g., removing unwanted characters, special symbols, etc.
|
23 |
+
text = text.lower() # Example of making text lowercase
|
24 |
+
text = text.replace("\n", " ") # Removing newlines
|
25 |
+
return text
|
26 |
+
|
27 |
+
# Apply cleaning to the dataset
|
28 |
+
dataset = dataset.map(lambda x: {'text': clean_text(x['text'])})
|
29 |
+
|
30 |
+
# Tokenization
|
31 |
+
def tokenize_function(examples):
|
32 |
+
return self.tokenizer(examples['text'], truncation=True, padding='max_length', max_length=Config.MAX_LENGTH)
|
33 |
+
|
34 |
+
# Tokenize the entire dataset
|
35 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
36 |
+
|
37 |
+
# Set format for PyTorch
|
38 |
+
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
39 |
+
|
40 |
+
return tokenized_dataset
|
41 |
+
|
42 |
+
def fine_tune(self, datasets):
|
43 |
+
"""
|
44 |
+
Fine-tune the model with the preprocessed datasets.
|
45 |
+
"""
|
46 |
+
# Load datasets (after pre-processing)
|
47 |
+
dataset_dict = DatasetDict({
|
48 |
+
"train": datasets['train'],
|
49 |
+
"validation": datasets['validation'],
|
50 |
+
})
|
51 |
+
|
52 |
+
# Training arguments
|
53 |
+
training_args = TrainingArguments(
|
54 |
+
output_dir=Config.OUTPUT_DIR,
|
55 |
+
evaluation_strategy="epoch",
|
56 |
+
learning_rate=Config.LEARNING_RATE,
|
57 |
+
per_device_train_batch_size=Config.BATCH_SIZE,
|
58 |
+
per_device_eval_batch_size=Config.BATCH_SIZE,
|
59 |
+
weight_decay=Config.WEIGHT_DECAY,
|
60 |
+
save_total_limit=3,
|
61 |
+
num_train_epochs=Config.NUM_EPOCHS,
|
62 |
+
logging_dir=Config.LOGGING_DIR,
|
63 |
+
load_best_model_at_end=True
|
64 |
+
)
|
65 |
+
|
66 |
+
# Trainer
|
67 |
+
trainer = Trainer(
|
68 |
+
model=self.model,
|
69 |
+
args=training_args,
|
70 |
+
train_dataset=dataset_dict['train'],
|
71 |
+
eval_dataset=dataset_dict['validation'],
|
72 |
+
)
|
73 |
+
|
74 |
+
# Fine-tuning
|
75 |
+
trainer.train()
|
76 |
+
|
77 |
def predict(self, prompt):
|
78 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=Config.MAX_LENGTH)
|
79 |
inputs = {key: value.to(Config.DEVICE) for key, value in inputs.items()}
|
80 |
|
81 |
outputs = self.model.generate(**inputs, max_length=Config.MAX_LENGTH)
|
82 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
83 |
+
|
84 |
+
def load_and_process_datasets(self):
|
85 |
+
"""
|
86 |
+
Loads and preprocesses the datasets for fine-tuning.
|
87 |
+
"""
|
88 |
+
# Load your OSINT and WhiteRabbitNeo datasets
|
89 |
+
osint_datasets = [
|
90 |
+
'gonferspanish/OSINT',
|
91 |
+
'Inforensics/missing-persons-clue-analysis-osint',
|
92 |
+
'jester6136/osint',
|
93 |
+
'originalbox/osint'
|
94 |
+
]
|
95 |
+
|
96 |
+
wrn_datasets = [
|
97 |
+
'WhiteRabbitNeo/WRN-Chapter-2',
|
98 |
+
'WhiteRabbitNeo/WRN-Chapter-1',
|
99 |
+
'WhiteRabbitNeo/Code-Functions-Level-Cyber'
|
100 |
+
]
|
101 |
+
|
102 |
+
# Combine all datasets into one for training
|
103 |
+
combined_datasets = []
|
104 |
+
|
105 |
+
# Load and preprocess OSINT datasets
|
106 |
+
for dataset_name in osint_datasets:
|
107 |
+
dataset = load_dataset(dataset_name)
|
108 |
+
processed_data = self.preprocess_data(dataset['train']) # Assuming the 'train' split exists
|
109 |
+
combined_datasets.append(processed_data)
|
110 |
+
|
111 |
+
# Load and preprocess WhiteRabbitNeo datasets
|
112 |
+
for dataset_name in wrn_datasets:
|
113 |
+
dataset = load_dataset(dataset_name)
|
114 |
+
processed_data = self.preprocess_data(dataset['train']) # Assuming the 'train' split exists
|
115 |
+
combined_datasets.append(processed_data)
|
116 |
+
|
117 |
+
# Combine all preprocessed datasets
|
118 |
+
full_dataset = DatasetDict()
|
119 |
+
full_dataset['train'] = Dataset.from_dict(pd.concat([d['train'] for d in combined_datasets]))
|
120 |
+
full_dataset['validation'] = Dataset.from_dict(pd.concat([d['validation'] for d in combined_datasets]))
|
121 |
+
|
122 |
+
return full_dataset
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
# Create the model object
|
126 |
+
model = CyberAttackDetectionModel()
|
127 |
+
|
128 |
+
# Load and preprocess datasets
|
129 |
+
preprocessed_datasets = model.load_and_process_datasets()
|
130 |
+
|
131 |
+
# Fine-tune the model
|
132 |
+
model.fine_tune(preprocessed_datasets)
|
133 |
+
|
134 |
+
# Example prediction
|
135 |
+
prompt = "A network scan reveals an open port 22 with an outdated SSH service."
|
136 |
+
print(model.predict(prompt))
|