Transformers
English
code
File size: 1,578 Bytes
bb89ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
import torch

# Load datasets
def load_train_data():
    # Example dataset
    train_dataset = load_dataset('csv', data_files={"train": "datasets/Canstralian/ShellCommands.csv"})
    return train_dataset

# Load model and tokenizer
def load_model_and_tokenizer(model_name):
    model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)  # Adjust labels
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    return model, tokenizer

# Preprocessing function
def preprocess_function(examples, tokenizer):
    return tokenizer(examples['text'], padding=True, truncation=True)

# Fine-tuning function
def fine_tune(model_name="WhiteRabbitNeo/WhiteRabbitNeo-13B-v1"):
    train_data = load_train_data()
    model, tokenizer = load_model_and_tokenizer(model_name)

    # Tokenize the dataset
    train_data = train_data.map(lambda x: preprocess_function(x, tokenizer), batched=True)
    train_data.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])

    # Training arguments
    training_args = TrainingArguments(
        output_dir='./results',
        evaluation_strategy="epoch",
        learning_rate=2e-5,
        per_device_train_batch_size=16,
        num_train_epochs=3,
        weight_decay=0.01,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_data['train'],
    )

    trainer.train()

# Call fine-tuning
fine_tune()