--- license: apache-2.0 base_model: HuggingFaceTB/SmolLM-360M-Instruct tags: - generated_from_trainer model-index: - name: SomlLm-360M-Ko-Instruct results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: HuggingFaceTB/SmolLM-360M-Instruct tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: CarrotAI/ko-instruction-dataset type: alpaca - path: werty1248/sharegpt-tagengo-gpt4-ko type: sharegpt - path: changpt/ko-lima-vicuna type: sharegpt - path: davidkim205/kollm-converations type: sharegpt - path: CarrotAI/Amazing-Instructions type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./SomlLm-360M-Ko-Instruct sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 6 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 1 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# SomlLm-360M-Ko-Instruct This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 96 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1401 | 0.9993 | 1316 | 1.1516 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1