--- license: llama2 base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: MSc_llama2_finetuned_model_secondData10 results: [] library_name: peft --- # MSc_llama2_finetuned_model_secondData10 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8835 | 1.33 | 10 | 3.4352 | | 2.9529 | 2.67 | 20 | 2.3780 | | 1.991 | 4.0 | 30 | 1.6911 | | 1.5061 | 5.33 | 40 | 1.2670 | | 1.0666 | 6.67 | 50 | 0.8670 | | 0.8464 | 8.0 | 60 | 0.8088 | | 0.7622 | 9.33 | 70 | 0.7478 | | 0.6869 | 10.67 | 80 | 0.7055 | | 0.6336 | 12.0 | 90 | 0.6840 | | 0.5789 | 13.33 | 100 | 0.6749 | | 0.5518 | 14.67 | 110 | 0.6685 | | 0.5159 | 16.0 | 120 | 0.6657 | | 0.4894 | 17.33 | 130 | 0.6743 | | 0.4674 | 18.67 | 140 | 0.6720 | | 0.4496 | 20.0 | 150 | 0.6806 | | 0.4292 | 21.33 | 160 | 0.6883 | | 0.421 | 22.67 | 170 | 0.6910 | | 0.4088 | 24.0 | 180 | 0.6956 | | 0.3988 | 25.33 | 190 | 0.7014 | | 0.3898 | 26.67 | 200 | 0.7065 | | 0.3827 | 28.0 | 210 | 0.7091 | | 0.3819 | 29.33 | 220 | 0.7104 | | 0.3778 | 30.67 | 230 | 0.7117 | | 0.3803 | 32.0 | 240 | 0.7126 | | 0.3804 | 33.33 | 250 | 0.7118 | ### Framework versions - PEFT 0.4.0 - Transformers 4.38.2 - Pytorch 2.4.0+cu121 - Datasets 2.13.1 - Tokenizers 0.15.2