File size: 2,615 Bytes
49febb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: t5_es_farshad_half_4_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5_es_farshad_half_4_1

This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0490
- Accuracy: 0.9916
- F1: 0.9919

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.6889        | 5.8501  | 50   | 0.6724          | 0.6073   | 0.5334 |
| 0.6445        | 11.7002 | 100  | 0.5323          | 0.8022   | 0.8091 |
| 0.3119        | 17.5503 | 150  | 0.1187          | 0.9649   | 0.9656 |
| 0.0967        | 23.4004 | 200  | 0.0648          | 0.9794   | 0.9800 |
| 0.0549        | 29.2505 | 250  | 0.0500          | 0.9858   | 0.9862 |
| 0.0359        | 35.1005 | 300  | 0.0465          | 0.9884   | 0.9888 |
| 0.0248        | 40.9506 | 350  | 0.0443          | 0.9887   | 0.9891 |
| 0.0183        | 46.8007 | 400  | 0.0404          | 0.9898   | 0.9902 |
| 0.0139        | 52.6508 | 450  | 0.0445          | 0.9890   | 0.9893 |
| 0.0111        | 58.5009 | 500  | 0.0559          | 0.9887   | 0.9890 |
| 0.0087        | 64.3510 | 550  | 0.0486          | 0.9893   | 0.9896 |
| 0.0081        | 70.2011 | 600  | 0.0440          | 0.9910   | 0.9913 |
| 0.0065        | 76.0512 | 650  | 0.0410          | 0.9919   | 0.9921 |
| 0.0045        | 81.9013 | 700  | 0.0596          | 0.9893   | 0.9896 |
| 0.0042        | 87.7514 | 750  | 0.0475          | 0.9898   | 0.9902 |
| 0.0036        | 93.6015 | 800  | 0.0490          | 0.9916   | 0.9919 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1