CengizhanAkbudak
commited on
End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1711815341.206EFEF.77735.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.1103
|
21 |
+
- Answer: {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809}
|
22 |
+
- Header: {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119}
|
23 |
+
- Question: {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065}
|
24 |
+
- Overall Precision: 0.4611
|
25 |
+
- Overall Recall: 0.5564
|
26 |
+
- Overall F1: 0.5043
|
27 |
+
- Overall Accuracy: 0.6256
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7545 | 1.0 | 10 | 1.4910 | {'precision': 0.04744787922358016, 'recall': 0.0815822002472188, 'f1': 0.06000000000000001, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2316715542521994, 'recall': 0.29671361502347415, 'f1': 0.2601893783449979, 'number': 1065} | 0.1386 | 0.1917 | 0.1608 | 0.3843 |
|
60 |
+
| 1.4327 | 2.0 | 20 | 1.3684 | {'precision': 0.1908983451536643, 'recall': 0.3992583436341162, 'f1': 0.258296681327469, 'number': 809} | {'precision': 0.08333333333333333, 'recall': 0.01680672268907563, 'f1': 0.027972027972027972, 'number': 119} | {'precision': 0.2686771761480466, 'recall': 0.36807511737089205, 'f1': 0.3106180665610142, 'number': 1065} | 0.2258 | 0.3598 | 0.2775 | 0.4199 |
|
61 |
+
| 1.3 | 3.0 | 30 | 1.2336 | {'precision': 0.23386581469648562, 'recall': 0.45241038318912236, 'f1': 0.3083403538331929, 'number': 809} | {'precision': 0.23404255319148937, 'recall': 0.09243697478991597, 'f1': 0.13253012048192772, 'number': 119} | {'precision': 0.3207196029776675, 'recall': 0.48544600938967136, 'f1': 0.3862532685842361, 'number': 1065} | 0.2773 | 0.4486 | 0.3427 | 0.4777 |
|
62 |
+
| 1.1799 | 4.0 | 40 | 1.1284 | {'precision': 0.26886145404663925, 'recall': 0.484548825710754, 'f1': 0.3458314953683282, 'number': 809} | {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} | {'precision': 0.369108049311095, 'recall': 0.4779342723004695, 'f1': 0.41653027823240585, 'number': 1065} | 0.3167 | 0.4656 | 0.3770 | 0.5629 |
|
63 |
+
| 1.0681 | 5.0 | 50 | 1.1019 | {'precision': 0.2949346405228758, 'recall': 0.446229913473424, 'f1': 0.35514018691588783, 'number': 809} | {'precision': 0.3373493975903614, 'recall': 0.23529411764705882, 'f1': 0.2772277227722772, 'number': 119} | {'precision': 0.38892345986309895, 'recall': 0.5868544600938967, 'f1': 0.46781437125748504, 'number': 1065} | 0.3480 | 0.5088 | 0.4133 | 0.5724 |
|
64 |
+
| 0.9791 | 6.0 | 60 | 1.2060 | {'precision': 0.33286810886252616, 'recall': 0.5896168108776267, 'f1': 0.4255129348795718, 'number': 809} | {'precision': 0.4, 'recall': 0.20168067226890757, 'f1': 0.2681564245810056, 'number': 119} | {'precision': 0.45607476635514016, 'recall': 0.4582159624413146, 'f1': 0.45714285714285713, 'number': 1065} | 0.3859 | 0.4962 | 0.4342 | 0.5718 |
|
65 |
+
| 0.9138 | 7.0 | 70 | 1.0604 | {'precision': 0.37743589743589745, 'recall': 0.45488257107540175, 'f1': 0.4125560538116592, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.25210084033613445, 'f1': 0.28708133971291866, 'number': 119} | {'precision': 0.4469026548672566, 'recall': 0.5690140845070423, 'f1': 0.5006195786864932, 'number': 1065} | 0.4147 | 0.5038 | 0.4549 | 0.5983 |
|
66 |
+
| 0.8555 | 8.0 | 80 | 1.0361 | {'precision': 0.3559928443649374, 'recall': 0.4919653893695921, 'f1': 0.4130773222625843, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.20168067226890757, 'f1': 0.2436548223350254, 'number': 119} | {'precision': 0.45045045045045046, 'recall': 0.6103286384976526, 'f1': 0.5183413078149921, 'number': 1065} | 0.4062 | 0.5379 | 0.4629 | 0.6104 |
|
67 |
+
| 0.8062 | 9.0 | 90 | 1.0676 | {'precision': 0.37511520737327186, 'recall': 0.5030902348578492, 'f1': 0.4297782470960929, 'number': 809} | {'precision': 0.31521739130434784, 'recall': 0.24369747899159663, 'f1': 0.27488151658767773, 'number': 119} | {'precision': 0.4796310530361261, 'recall': 0.5859154929577465, 'f1': 0.5274725274725274, 'number': 1065} | 0.4278 | 0.5319 | 0.4742 | 0.6094 |
|
68 |
+
| 0.7981 | 10.0 | 100 | 1.0901 | {'precision': 0.3904109589041096, 'recall': 0.4932014833127318, 'f1': 0.4358274167121791, 'number': 809} | {'precision': 0.3132530120481928, 'recall': 0.2184873949579832, 'f1': 0.25742574257425743, 'number': 119} | {'precision': 0.47112462006079026, 'recall': 0.5821596244131455, 'f1': 0.5207895842083158, 'number': 1065} | 0.4316 | 0.5243 | 0.4735 | 0.6113 |
|
69 |
+
| 0.7159 | 11.0 | 110 | 1.1141 | {'precision': 0.3889908256880734, 'recall': 0.5241038318912238, 'f1': 0.4465508162190627, 'number': 809} | {'precision': 0.26732673267326734, 'recall': 0.226890756302521, 'f1': 0.24545454545454548, 'number': 119} | {'precision': 0.5027844073190135, 'recall': 0.5934272300469483, 'f1': 0.5443583118001722, 'number': 1065} | 0.4424 | 0.5434 | 0.4877 | 0.6139 |
|
70 |
+
| 0.7242 | 12.0 | 120 | 1.0786 | {'precision': 0.39233576642335766, 'recall': 0.5315203955500618, 'f1': 0.4514435695538058, 'number': 809} | {'precision': 0.2926829268292683, 'recall': 0.20168067226890757, 'f1': 0.23880597014925373, 'number': 119} | {'precision': 0.5096674400618716, 'recall': 0.6187793427230047, 'f1': 0.5589482612383375, 'number': 1065} | 0.4504 | 0.5585 | 0.4987 | 0.6172 |
|
71 |
+
| 0.6895 | 13.0 | 130 | 1.1184 | {'precision': 0.4066427289048474, 'recall': 0.5599505562422744, 'f1': 0.4711388455538222, 'number': 809} | {'precision': 0.2696629213483146, 'recall': 0.20168067226890757, 'f1': 0.23076923076923078, 'number': 119} | {'precision': 0.5230125523012552, 'recall': 0.5868544600938967, 'f1': 0.5530973451327434, 'number': 1065} | 0.4595 | 0.5529 | 0.5019 | 0.6134 |
|
72 |
+
| 0.6605 | 14.0 | 140 | 1.1015 | {'precision': 0.4114737883283877, 'recall': 0.5142150803461063, 'f1': 0.45714285714285713, 'number': 809} | {'precision': 0.2631578947368421, 'recall': 0.21008403361344538, 'f1': 0.23364485981308414, 'number': 119} | {'precision': 0.5068702290076336, 'recall': 0.6234741784037559, 'f1': 0.5591578947368421, 'number': 1065} | 0.4574 | 0.5544 | 0.5012 | 0.6242 |
|
73 |
+
| 0.6498 | 15.0 | 150 | 1.1103 | {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809} | {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119} | {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065} | 0.4611 | 0.5564 | 0.5043 | 0.6256 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.38.1
|
79 |
+
- Pytorch 2.2.2+cu118
|
80 |
+
- Datasets 2.18.0
|
81 |
+
- Tokenizers 0.15.2
|
logs/events.out.tfevents.1711815341.206EFEF.77735.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2ee0219eef20f3acc58f41489002698836fae9c898ff12a9dc7820b2c858dec
|
3 |
+
size 15738
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7eadc8d5a5fcf400b88dd860fb48bd8467f90e7b8feca92b29b09c3edb84b52
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|