CengizhanAkbudak commited on
Commit
41c6d47
·
verified ·
1 Parent(s): 14ab402

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1103
21
+ - Answer: {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809}
22
+ - Header: {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119}
23
+ - Question: {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065}
24
+ - Overall Precision: 0.4611
25
+ - Overall Recall: 0.5564
26
+ - Overall F1: 0.5043
27
+ - Overall Accuracy: 0.6256
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7545 | 1.0 | 10 | 1.4910 | {'precision': 0.04744787922358016, 'recall': 0.0815822002472188, 'f1': 0.06000000000000001, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2316715542521994, 'recall': 0.29671361502347415, 'f1': 0.2601893783449979, 'number': 1065} | 0.1386 | 0.1917 | 0.1608 | 0.3843 |
60
+ | 1.4327 | 2.0 | 20 | 1.3684 | {'precision': 0.1908983451536643, 'recall': 0.3992583436341162, 'f1': 0.258296681327469, 'number': 809} | {'precision': 0.08333333333333333, 'recall': 0.01680672268907563, 'f1': 0.027972027972027972, 'number': 119} | {'precision': 0.2686771761480466, 'recall': 0.36807511737089205, 'f1': 0.3106180665610142, 'number': 1065} | 0.2258 | 0.3598 | 0.2775 | 0.4199 |
61
+ | 1.3 | 3.0 | 30 | 1.2336 | {'precision': 0.23386581469648562, 'recall': 0.45241038318912236, 'f1': 0.3083403538331929, 'number': 809} | {'precision': 0.23404255319148937, 'recall': 0.09243697478991597, 'f1': 0.13253012048192772, 'number': 119} | {'precision': 0.3207196029776675, 'recall': 0.48544600938967136, 'f1': 0.3862532685842361, 'number': 1065} | 0.2773 | 0.4486 | 0.3427 | 0.4777 |
62
+ | 1.1799 | 4.0 | 40 | 1.1284 | {'precision': 0.26886145404663925, 'recall': 0.484548825710754, 'f1': 0.3458314953683282, 'number': 809} | {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} | {'precision': 0.369108049311095, 'recall': 0.4779342723004695, 'f1': 0.41653027823240585, 'number': 1065} | 0.3167 | 0.4656 | 0.3770 | 0.5629 |
63
+ | 1.0681 | 5.0 | 50 | 1.1019 | {'precision': 0.2949346405228758, 'recall': 0.446229913473424, 'f1': 0.35514018691588783, 'number': 809} | {'precision': 0.3373493975903614, 'recall': 0.23529411764705882, 'f1': 0.2772277227722772, 'number': 119} | {'precision': 0.38892345986309895, 'recall': 0.5868544600938967, 'f1': 0.46781437125748504, 'number': 1065} | 0.3480 | 0.5088 | 0.4133 | 0.5724 |
64
+ | 0.9791 | 6.0 | 60 | 1.2060 | {'precision': 0.33286810886252616, 'recall': 0.5896168108776267, 'f1': 0.4255129348795718, 'number': 809} | {'precision': 0.4, 'recall': 0.20168067226890757, 'f1': 0.2681564245810056, 'number': 119} | {'precision': 0.45607476635514016, 'recall': 0.4582159624413146, 'f1': 0.45714285714285713, 'number': 1065} | 0.3859 | 0.4962 | 0.4342 | 0.5718 |
65
+ | 0.9138 | 7.0 | 70 | 1.0604 | {'precision': 0.37743589743589745, 'recall': 0.45488257107540175, 'f1': 0.4125560538116592, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.25210084033613445, 'f1': 0.28708133971291866, 'number': 119} | {'precision': 0.4469026548672566, 'recall': 0.5690140845070423, 'f1': 0.5006195786864932, 'number': 1065} | 0.4147 | 0.5038 | 0.4549 | 0.5983 |
66
+ | 0.8555 | 8.0 | 80 | 1.0361 | {'precision': 0.3559928443649374, 'recall': 0.4919653893695921, 'f1': 0.4130773222625843, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.20168067226890757, 'f1': 0.2436548223350254, 'number': 119} | {'precision': 0.45045045045045046, 'recall': 0.6103286384976526, 'f1': 0.5183413078149921, 'number': 1065} | 0.4062 | 0.5379 | 0.4629 | 0.6104 |
67
+ | 0.8062 | 9.0 | 90 | 1.0676 | {'precision': 0.37511520737327186, 'recall': 0.5030902348578492, 'f1': 0.4297782470960929, 'number': 809} | {'precision': 0.31521739130434784, 'recall': 0.24369747899159663, 'f1': 0.27488151658767773, 'number': 119} | {'precision': 0.4796310530361261, 'recall': 0.5859154929577465, 'f1': 0.5274725274725274, 'number': 1065} | 0.4278 | 0.5319 | 0.4742 | 0.6094 |
68
+ | 0.7981 | 10.0 | 100 | 1.0901 | {'precision': 0.3904109589041096, 'recall': 0.4932014833127318, 'f1': 0.4358274167121791, 'number': 809} | {'precision': 0.3132530120481928, 'recall': 0.2184873949579832, 'f1': 0.25742574257425743, 'number': 119} | {'precision': 0.47112462006079026, 'recall': 0.5821596244131455, 'f1': 0.5207895842083158, 'number': 1065} | 0.4316 | 0.5243 | 0.4735 | 0.6113 |
69
+ | 0.7159 | 11.0 | 110 | 1.1141 | {'precision': 0.3889908256880734, 'recall': 0.5241038318912238, 'f1': 0.4465508162190627, 'number': 809} | {'precision': 0.26732673267326734, 'recall': 0.226890756302521, 'f1': 0.24545454545454548, 'number': 119} | {'precision': 0.5027844073190135, 'recall': 0.5934272300469483, 'f1': 0.5443583118001722, 'number': 1065} | 0.4424 | 0.5434 | 0.4877 | 0.6139 |
70
+ | 0.7242 | 12.0 | 120 | 1.0786 | {'precision': 0.39233576642335766, 'recall': 0.5315203955500618, 'f1': 0.4514435695538058, 'number': 809} | {'precision': 0.2926829268292683, 'recall': 0.20168067226890757, 'f1': 0.23880597014925373, 'number': 119} | {'precision': 0.5096674400618716, 'recall': 0.6187793427230047, 'f1': 0.5589482612383375, 'number': 1065} | 0.4504 | 0.5585 | 0.4987 | 0.6172 |
71
+ | 0.6895 | 13.0 | 130 | 1.1184 | {'precision': 0.4066427289048474, 'recall': 0.5599505562422744, 'f1': 0.4711388455538222, 'number': 809} | {'precision': 0.2696629213483146, 'recall': 0.20168067226890757, 'f1': 0.23076923076923078, 'number': 119} | {'precision': 0.5230125523012552, 'recall': 0.5868544600938967, 'f1': 0.5530973451327434, 'number': 1065} | 0.4595 | 0.5529 | 0.5019 | 0.6134 |
72
+ | 0.6605 | 14.0 | 140 | 1.1015 | {'precision': 0.4114737883283877, 'recall': 0.5142150803461063, 'f1': 0.45714285714285713, 'number': 809} | {'precision': 0.2631578947368421, 'recall': 0.21008403361344538, 'f1': 0.23364485981308414, 'number': 119} | {'precision': 0.5068702290076336, 'recall': 0.6234741784037559, 'f1': 0.5591578947368421, 'number': 1065} | 0.4574 | 0.5544 | 0.5012 | 0.6242 |
73
+ | 0.6498 | 15.0 | 150 | 1.1103 | {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809} | {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119} | {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065} | 0.4611 | 0.5564 | 0.5043 | 0.6256 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.38.1
79
+ - Pytorch 2.2.2+cu118
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1711815341.206EFEF.77735.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:78663b03f9e2a546281277357311a15236d6a7e99f7cfd67b218a5aedf3941cc
3
- size 13954
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2ee0219eef20f3acc58f41489002698836fae9c898ff12a9dc7820b2c858dec
3
+ size 15738
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:70c44eb6d45f7729273a682a996b3960ba819905d9d84c776b06479e72bf46aa
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7eadc8d5a5fcf400b88dd860fb48bd8467f90e7b8feca92b29b09c3edb84b52
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff