Lunar Agent Training 1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2312.zip +3 -0
- ppo-LunarLander-v2312/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2312/data +95 -0
- ppo-LunarLander-v2312/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2312/policy.pth +3 -0
- ppo-LunarLander-v2312/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2312/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -236.41 +/- 132.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b4adc24c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b4adc2550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b4adc25e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b4adc2670>", "_build": "<function ActorCriticPolicy._build at 0x7f4b4adc2700>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b4adc2790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b4adc2820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b4adc28b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b4adc2940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b4adc29d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b4adc2a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b4adc2af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4b4adc5440>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678489855100132385, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBoFb6/gDA/5hLxvnphjb87UII/v5e8PgAAAAAAAAAAms4yvvcinz8a7BC/dRsQv8++jD7SHwM+AAAAAAAAAACmWoo+3KOwP4fuMT+USLa+k9bqvpLepL4AAAAAAAAAAMqXjb5itT4/7VYfv5IilL9DoN29Qs64vgAAAAAAAAAAMx7UPBRvuT+vGio/l3vCPi5YAr2FeEe+AAAAAAAAAAC6rkQ/rNKVPlumrj8wHra/rG2Dv4vZL70AAAAAAAAAAFrGqD0EaC4/ztR6Phmnjr/ugLC9aBaJOAAAAAAAAAAATTZXPdVjqj9mhxg/ozHvvm6tSr2gD/u9AAAAAAAAAAAAAG05bUy2Pzhjhzx/OJ8+c3nhOTroHzwAAAAAAAAAALN2Mj/D5I0+SIiKP6bCi79aSsK/kxuEwAAAgD8AAAAADe46vk53kz8Im1e/Gic7v/zSWD5OsZw+AAAAAAAAAABTyH4/cfsAP/YQ8z+lnce/ZWoFwBonAL8AAAAAAAAAAE0cNL0wIZ8//PoPvr5mB7+NMDg+i6vXPAAAAAAAAAAA8zw3PlzjbD9qbcw+BHNHv8XpArn7dla9AAAAAAAAAAAAqYc+hft4P31VYz/P+CO/fJ8dv1ha+b4AAAAAAAAAADOaubzmOK4/YliMvuNamb6HBQw98cMEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -5.5536, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI02pI3GOtX8CUhpRSlIwBbJRLVYwBdJRHQDXYTXarWAh1fZQoaAZoCWgPQwjf3F897vRSwJSGlFKUaBVLYWgWR0A171BdD6WPdX2UKGgGaAloD0MI3bQZp6EwccCUhpRSlGgVS0hoFkdANfHp4bCJoHV9lChoBmgJaA9DCHQjLCpi/27AlIaUUpRoFUt3aBZHQDYATcqOLix1fZQoaAZoCWgPQwgonUgw1TtZwJSGlFKUaBVLamgWR0A2CSZBsyi3dX2UKGgGaAloD0MIc6CH2jYoRsCUhpRSlGgVSzxoFkdANg4/Vy3kP3V9lChoBmgJaA9DCJvJN9vcw2PAlIaUUpRoFUt2aBZHQDYRaOgg5ip1fZQoaAZoCWgPQwgG9phI6VFgwJSGlFKUaBVLaWgWR0A2HrTH80k4dX2UKGgGaAloD0MIP+YDAh0KasCUhpRSlGgVS0doFkdANil7+kxh2HV9lChoBmgJaA9DCAq6vaSx6W3AlIaUUpRoFUtgaBZHQDYr4vexfOV1fZQoaAZoCWgPQwg2k2+2uUkgQJSGlFKUaBVLb2gWR0A2QMewLVnVdX2UKGgGaAloD0MIwsHexFC0dsCUhpRSlGgVS3doFkdANlAPNFBppXV9lChoBmgJaA9DCONrzywJgVjAlIaUUpRoFUtvaBZHQDZQS5AhStN1fZQoaAZoCWgPQwhrSUc5GOtuwJSGlFKUaBVLfWgWR0A2U86FM7EHdX2UKGgGaAloD0MIEd+JWe/CccCUhpRSlGgVS2NoFkdANlW4iHIp6XV9lChoBmgJaA9DCLyQDg9hvWXAlIaUUpRoFUtgaBZHQDZfpSrHU+d1fZQoaAZoCWgPQwgMzuDvF5dawJSGlFKUaBVLSWgWR0A2YP557gKndX2UKGgGaAloD0MILq7xmWzBY8CUhpRSlGgVS0FoFkdANmTzundfs3V9lChoBmgJaA9DCHqqQ26Gs2jAlIaUUpRoFUtbaBZHQDZl9gF5fMR1fZQoaAZoCWgPQwiIga59gQZgwJSGlFKUaBVLU2gWR0A2cOpsGgSOdX2UKGgGaAloD0MIQUZAhSMLVcCUhpRSlGgVS0RoFkdANnTPfKp1inV9lChoBmgJaA9DCKVrJt9sVV/AlIaUUpRoFUtKaBZHQDaNX5nDiwV1fZQoaAZoCWgPQwikjo6rkUZswJSGlFKUaBVLRGgWR0A2judwvQF+dX2UKGgGaAloD0MInFCIgEOCU8CUhpRSlGgVS0RoFkdANpDcdo3713V9lChoBmgJaA9DCBiw5CqWHWfAlIaUUpRoFUtlaBZHQDahjZtelbh1fZQoaAZoCWgPQwik/+VatLNfwJSGlFKUaBVLbmgWR0A2tifxtpEhdX2UKGgGaAloD0MI6MByhAy/VsCUhpRSlGgVS0poFkdANsMRL9MsYnV9lChoBmgJaA9DCOQSRx6IuGPAlIaUUpRoFUtHaBZHQDbPCZWq95B1fZQoaAZoCWgPQwg826M33NVswJSGlFKUaBVLUmgWR0A2znctXgccdX2UKGgGaAloD0MI8+fbgqWNWMCUhpRSlGgVS0toFkdANtBOLzf78HV9lChoBmgJaA9DCMHHYMUpT2HAlIaUUpRoFUtBaBZHQDbX+FUQ0411fZQoaAZoCWgPQwjMRBFSN8ljwJSGlFKUaBVLSGgWR0A23r30wrUcdX2UKGgGaAloD0MIgJnv4CfwX8CUhpRSlGgVS2ZoFkdANuop2ECeVnV9lChoBmgJaA9DCJw24zRE1X3AlIaUUpRoFUtbaBZHQDbviQ1aW5Z1fZQoaAZoCWgPQwiG6BA4Ei9awJSGlFKUaBVLQWgWR0A28eGO+7DmdX2UKGgGaAloD0MIL6LtmHrUdsCUhpRSlGgVS25oFkdANvZs0pEx7HV9lChoBmgJaA9DCJcBZylZRV3AlIaUUpRoFUuCaBZHQDcAzeoDPnl1fZQoaAZoCWgPQwiyKy0jdfhmwJSGlFKUaBVLbWgWR0A3AIdU83dcdX2UKGgGaAloD0MI1JrmHafdXsCUhpRSlGgVS0JoFkdANxTPBzmwJXV9lChoBmgJaA9DCGAjSRCu/nPAlIaUUpRoFUtkaBZHQDcVa0QbuMN1fZQoaAZoCWgPQwjWcfxQ6aFtwJSGlFKUaBVLaWgWR0A3GefI0ZWJdX2UKGgGaAloD0MIyFuufmxeO8CUhpRSlGgVS0JoFkdANxzcVQAMlXV9lChoBmgJaA9DCLX/AdYqhWTAlIaUUpRoFUtmaBZHQDch9NN8E3d1fZQoaAZoCWgPQwiJ00m2ulxWwJSGlFKUaBVLQ2gWR0A3Jj0L+glGdX2UKGgGaAloD0MINuSfGcRzNcCUhpRSlGgVS09oFkdANycp9ZzPr3V9lChoBmgJaA9DCKxwy0dS/FjAlIaUUpRoFUs9aBZHQDctg7YChex1fZQoaAZoCWgPQwjCTxxAv2ZVwJSGlFKUaBVLO2gWR0A3NSmqHXVcdX2UKGgGaAloD0MIjX+fcWE8YcCUhpRSlGgVS01oFkdANzgtJ4B3inV9lChoBmgJaA9DCLWjOEcdVWzAlIaUUpRoFUtRaBZHQDc4TL4etCB1fZQoaAZoCWgPQwjrp/+s+fNmwJSGlFKUaBVLY2gWR0A3PjdHlOoHdX2UKGgGaAloD0MIhnXj3ZFvV8CUhpRSlGgVS4FoFkdAN0WX9itq6HV9lChoBmgJaA9DCCx+U1gpiHPAlIaUUpRoFUtRaBZHQDdIYl6Z6Ut1fZQoaAZoCWgPQwg2rRQCOUVpwJSGlFKUaBVLYGgWR0A3StfoicG1dX2UKGgGaAloD0MIV5OnrGZxcMCUhpRSlGgVS3ZoFkdAN0qjafzz3HV9lChoBmgJaA9DCKg2OBH9YVjAlIaUUpRoFUs9aBZHQDdSMyad+Xt1fZQoaAZoCWgPQwhA+iZNgwtXwJSGlFKUaBVLPGgWR0A3W4L1EmY0dX2UKGgGaAloD0MI5PVgUvxmY8CUhpRSlGgVS2RoFkdAN26MNtqHoHV9lChoBmgJaA9DCMalKm3x+WnAlIaUUpRoFUtPaBZHQDd0EPlMh5h1fZQoaAZoCWgPQwg5nPnVHC1WwJSGlFKUaBVLaWgWR0A3d1hb4agmdX2UKGgGaAloD0MIJSTSNv5kb8CUhpRSlGgVS0xoFkdAN3x6v7m+03V9lChoBmgJaA9DCN9t3jjpyX7AlIaUUpRoFUtlaBZHQDeAgyM1jy51fZQoaAZoCWgPQwhUVP1KZ/VtwJSGlFKUaBVLSWgWR0A3gCPIXCTEdX2UKGgGaAloD0MIWrkXmBVbU8CUhpRSlGgVS3loFkdAN4JOWSlnAnV9lChoBmgJaA9DCKK1os1xuF/AlIaUUpRoFUtVaBZHQDeFPpIMBp51fZQoaAZoCWgPQwjGbTSAt2NawJSGlFKUaBVLRmgWR0A3hXJo0ygxdX2UKGgGaAloD0MIpOAp5EoeXcCUhpRSlGgVS3toFkdAN5AvpQk5ZXV9lChoBmgJaA9DCNYCe0ykL1DAlIaUUpRoFUtaaBZHQDeZWhh6Skl1fZQoaAZoCWgPQwiLpUi+EsthwJSGlFKUaBVLV2gWR0A3oYKpkwvhdX2UKGgGaAloD0MIzhlR2lukfcCUhpRSlGgVS3hoFkdAN6GphnanJnV9lChoBmgJaA9DCA9eu7ThkFLAlIaUUpRoFUtBaBZHQDepzjm0VrR1fZQoaAZoCWgPQwgzpIriVR9lwJSGlFKUaBVLbmgWR0A3rYukDZDidX2UKGgGaAloD0MIFyr/Wt4KbcCUhpRSlGgVS3doFkdAN7WR7qptJnV9lChoBmgJaA9DCBNgWP78uGDAlIaUUpRoFUtoaBZHQDe5n003wTd1fZQoaAZoCWgPQwjRd7eyBCxxwJSGlFKUaBVLV2gWR0A3zyQPqcEvdX2UKGgGaAloD0MIB35Uw35oW8CUhpRSlGgVS2toFkdAN9f5LytmtnV9lChoBmgJaA9DCBpqFJJMNXHAlIaUUpRoFUtQaBZHQDfbh4t6HCZ1fZQoaAZoCWgPQwjdzr7yoDJrwJSGlFKUaBVLXmgWR0A33T72tdRjdX2UKGgGaAloD0MICwkYXR4Me8CUhpRSlGgVS3doFkdAN+bFn7Hhj3V9lChoBmgJaA9DCP+z5sdfjVjAlIaUUpRoFUtzaBZHQDfr8Muvllt1fZQoaAZoCWgPQwiYUMHhBXtQwJSGlFKUaBVLVmgWR0A368MNMGordX2UKGgGaAloD0MIFFysqMF4TMCUhpRSlGgVS0VoFkdAN/CxJNCZ4XV9lChoBmgJaA9DCP8gkiGHaHHAlIaUUpRoFUt7aBZHQDfwVqN6w+t1fZQoaAZoCWgPQwidEDrokiRgwJSGlFKUaBVLWWgWR0A39pAUtZmqdX2UKGgGaAloD0MISino9pJQdcCUhpRSlGgVS4FoFkdAN/r1uivgWXV9lChoBmgJaA9DCCu/DMaIUlbAlIaUUpRoFUtWaBZHQDf8Nz8xbjd1fZQoaAZoCWgPQwg1m8dhMBtmwJSGlFKUaBVLRmgWR0A3/g2606YFdX2UKGgGaAloD0MInnx6bMtdYsCUhpRSlGgVS05oFkdAOAEhV2iconV9lChoBmgJaA9DCB0EHa1qd3PAlIaUUpRoFUuGaBZHQDgDFR51Ng11fZQoaAZoCWgPQwiySumZXo1UwJSGlFKUaBVLPmgWR0A4IN5dGAkLdX2UKGgGaAloD0MIylLr/Ub5VMCUhpRSlGgVS0xoFkdAOCTMJQcghnV9lChoBmgJaA9DCDDxR1Fnl2/AlIaUUpRoFUtRaBZHQDgk2rGR3eN1fZQoaAZoCWgPQwi5wVCHFWVawJSGlFKUaBVLPmgWR0A4JigTRIBjdX2UKGgGaAloD0MI3T8WosN1csCUhpRSlGgVS19oFkdAOCuw9q1w53V9lChoBmgJaA9DCHpvDAHAImHAlIaUUpRoFUuRaBZHQDgrZzxPO6d1fZQoaAZoCWgPQwgsmzkkteRnwJSGlFKUaBVLQGgWR0A4MmqHXVbzdX2UKGgGaAloD0MIaW/whcm7WsCUhpRSlGgVSz9oFkdAODkSyt3fRHV9lChoBmgJaA9DCA1uawsPE3TAlIaUUpRoFUthaBZHQDhGgxrSE151fZQoaAZoCWgPQwiVu8/xkWlzwJSGlFKUaBVLXGgWR0A4RgNgBtDVdX2UKGgGaAloD0MIhGOWPckscMCUhpRSlGgVS05oFkdAOEwbEP1+RnV9lChoBmgJaA9DCB4YQPhQ61TAlIaUUpRoFUt5aBZHQDhNcVxjriV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8, "n_steps": 2048, "gamma": 0.9995, "gae_lambda": 0.985, "ent_coef": 0.015, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2312.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b5fb469dfd4d1ddaa2e37786bc40e3778cfd57f3bf74c09f10002c8d0abdfc8
|
3 |
+
size 147279
|
ppo-LunarLander-v2312/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2312/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b4adc24c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b4adc2550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b4adc25e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b4adc2670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4b4adc2700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4b4adc2790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b4adc2820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b4adc28b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4b4adc2940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b4adc29d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b4adc2a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b4adc2af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4b4adc5440>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 32768,
|
47 |
+
"_total_timesteps": 5000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678489855100132385,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBoFb6/gDA/5hLxvnphjb87UII/v5e8PgAAAAAAAAAAms4yvvcinz8a7BC/dRsQv8++jD7SHwM+AAAAAAAAAACmWoo+3KOwP4fuMT+USLa+k9bqvpLepL4AAAAAAAAAAMqXjb5itT4/7VYfv5IilL9DoN29Qs64vgAAAAAAAAAAMx7UPBRvuT+vGio/l3vCPi5YAr2FeEe+AAAAAAAAAAC6rkQ/rNKVPlumrj8wHra/rG2Dv4vZL70AAAAAAAAAAFrGqD0EaC4/ztR6Phmnjr/ugLC9aBaJOAAAAAAAAAAATTZXPdVjqj9mhxg/ozHvvm6tSr2gD/u9AAAAAAAAAAAAAG05bUy2Pzhjhzx/OJ8+c3nhOTroHzwAAAAAAAAAALN2Mj/D5I0+SIiKP6bCi79aSsK/kxuEwAAAgD8AAAAADe46vk53kz8Im1e/Gic7v/zSWD5OsZw+AAAAAAAAAABTyH4/cfsAP/YQ8z+lnce/ZWoFwBonAL8AAAAAAAAAAE0cNL0wIZ8//PoPvr5mB7+NMDg+i6vXPAAAAAAAAAAA8zw3PlzjbD9qbcw+BHNHv8XpArn7dla9AAAAAAAAAAAAqYc+hft4P31VYz/P+CO/fJ8dv1ha+b4AAAAAAAAAADOaubzmOK4/YliMvuNamb6HBQw98cMEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -5.5536,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI02pI3GOtX8CUhpRSlIwBbJRLVYwBdJRHQDXYTXarWAh1fZQoaAZoCWgPQwjf3F897vRSwJSGlFKUaBVLYWgWR0A171BdD6WPdX2UKGgGaAloD0MI3bQZp6EwccCUhpRSlGgVS0hoFkdANfHp4bCJoHV9lChoBmgJaA9DCHQjLCpi/27AlIaUUpRoFUt3aBZHQDYATcqOLix1fZQoaAZoCWgPQwgonUgw1TtZwJSGlFKUaBVLamgWR0A2CSZBsyi3dX2UKGgGaAloD0MIc6CH2jYoRsCUhpRSlGgVSzxoFkdANg4/Vy3kP3V9lChoBmgJaA9DCJvJN9vcw2PAlIaUUpRoFUt2aBZHQDYRaOgg5ip1fZQoaAZoCWgPQwgG9phI6VFgwJSGlFKUaBVLaWgWR0A2HrTH80k4dX2UKGgGaAloD0MIP+YDAh0KasCUhpRSlGgVS0doFkdANil7+kxh2HV9lChoBmgJaA9DCAq6vaSx6W3AlIaUUpRoFUtgaBZHQDYr4vexfOV1fZQoaAZoCWgPQwg2k2+2uUkgQJSGlFKUaBVLb2gWR0A2QMewLVnVdX2UKGgGaAloD0MIwsHexFC0dsCUhpRSlGgVS3doFkdANlAPNFBppXV9lChoBmgJaA9DCONrzywJgVjAlIaUUpRoFUtvaBZHQDZQS5AhStN1fZQoaAZoCWgPQwhrSUc5GOtuwJSGlFKUaBVLfWgWR0A2U86FM7EHdX2UKGgGaAloD0MIEd+JWe/CccCUhpRSlGgVS2NoFkdANlW4iHIp6XV9lChoBmgJaA9DCLyQDg9hvWXAlIaUUpRoFUtgaBZHQDZfpSrHU+d1fZQoaAZoCWgPQwgMzuDvF5dawJSGlFKUaBVLSWgWR0A2YP557gKndX2UKGgGaAloD0MILq7xmWzBY8CUhpRSlGgVS0FoFkdANmTzundfs3V9lChoBmgJaA9DCHqqQ26Gs2jAlIaUUpRoFUtbaBZHQDZl9gF5fMR1fZQoaAZoCWgPQwiIga59gQZgwJSGlFKUaBVLU2gWR0A2cOpsGgSOdX2UKGgGaAloD0MIQUZAhSMLVcCUhpRSlGgVS0RoFkdANnTPfKp1inV9lChoBmgJaA9DCKVrJt9sVV/AlIaUUpRoFUtKaBZHQDaNX5nDiwV1fZQoaAZoCWgPQwikjo6rkUZswJSGlFKUaBVLRGgWR0A2judwvQF+dX2UKGgGaAloD0MInFCIgEOCU8CUhpRSlGgVS0RoFkdANpDcdo3713V9lChoBmgJaA9DCBiw5CqWHWfAlIaUUpRoFUtlaBZHQDahjZtelbh1fZQoaAZoCWgPQwik/+VatLNfwJSGlFKUaBVLbmgWR0A2tifxtpEhdX2UKGgGaAloD0MI6MByhAy/VsCUhpRSlGgVS0poFkdANsMRL9MsYnV9lChoBmgJaA9DCOQSRx6IuGPAlIaUUpRoFUtHaBZHQDbPCZWq95B1fZQoaAZoCWgPQwg826M33NVswJSGlFKUaBVLUmgWR0A2znctXgccdX2UKGgGaAloD0MI8+fbgqWNWMCUhpRSlGgVS0toFkdANtBOLzf78HV9lChoBmgJaA9DCMHHYMUpT2HAlIaUUpRoFUtBaBZHQDbX+FUQ0411fZQoaAZoCWgPQwjMRBFSN8ljwJSGlFKUaBVLSGgWR0A23r30wrUcdX2UKGgGaAloD0MIgJnv4CfwX8CUhpRSlGgVS2ZoFkdANuop2ECeVnV9lChoBmgJaA9DCJw24zRE1X3AlIaUUpRoFUtbaBZHQDbviQ1aW5Z1fZQoaAZoCWgPQwiG6BA4Ei9awJSGlFKUaBVLQWgWR0A28eGO+7DmdX2UKGgGaAloD0MIL6LtmHrUdsCUhpRSlGgVS25oFkdANvZs0pEx7HV9lChoBmgJaA9DCJcBZylZRV3AlIaUUpRoFUuCaBZHQDcAzeoDPnl1fZQoaAZoCWgPQwiyKy0jdfhmwJSGlFKUaBVLbWgWR0A3AIdU83dcdX2UKGgGaAloD0MI1JrmHafdXsCUhpRSlGgVS0JoFkdANxTPBzmwJXV9lChoBmgJaA9DCGAjSRCu/nPAlIaUUpRoFUtkaBZHQDcVa0QbuMN1fZQoaAZoCWgPQwjWcfxQ6aFtwJSGlFKUaBVLaWgWR0A3GefI0ZWJdX2UKGgGaAloD0MIyFuufmxeO8CUhpRSlGgVS0JoFkdANxzcVQAMlXV9lChoBmgJaA9DCLX/AdYqhWTAlIaUUpRoFUtmaBZHQDch9NN8E3d1fZQoaAZoCWgPQwiJ00m2ulxWwJSGlFKUaBVLQ2gWR0A3Jj0L+glGdX2UKGgGaAloD0MINuSfGcRzNcCUhpRSlGgVS09oFkdANycp9ZzPr3V9lChoBmgJaA9DCKxwy0dS/FjAlIaUUpRoFUs9aBZHQDctg7YChex1fZQoaAZoCWgPQwjCTxxAv2ZVwJSGlFKUaBVLO2gWR0A3NSmqHXVcdX2UKGgGaAloD0MIjX+fcWE8YcCUhpRSlGgVS01oFkdANzgtJ4B3inV9lChoBmgJaA9DCLWjOEcdVWzAlIaUUpRoFUtRaBZHQDc4TL4etCB1fZQoaAZoCWgPQwjrp/+s+fNmwJSGlFKUaBVLY2gWR0A3PjdHlOoHdX2UKGgGaAloD0MIhnXj3ZFvV8CUhpRSlGgVS4FoFkdAN0WX9itq6HV9lChoBmgJaA9DCCx+U1gpiHPAlIaUUpRoFUtRaBZHQDdIYl6Z6Ut1fZQoaAZoCWgPQwg2rRQCOUVpwJSGlFKUaBVLYGgWR0A3StfoicG1dX2UKGgGaAloD0MIV5OnrGZxcMCUhpRSlGgVS3ZoFkdAN0qjafzz3HV9lChoBmgJaA9DCKg2OBH9YVjAlIaUUpRoFUs9aBZHQDdSMyad+Xt1fZQoaAZoCWgPQwhA+iZNgwtXwJSGlFKUaBVLPGgWR0A3W4L1EmY0dX2UKGgGaAloD0MI5PVgUvxmY8CUhpRSlGgVS2RoFkdAN26MNtqHoHV9lChoBmgJaA9DCMalKm3x+WnAlIaUUpRoFUtPaBZHQDd0EPlMh5h1fZQoaAZoCWgPQwg5nPnVHC1WwJSGlFKUaBVLaWgWR0A3d1hb4agmdX2UKGgGaAloD0MIJSTSNv5kb8CUhpRSlGgVS0xoFkdAN3x6v7m+03V9lChoBmgJaA9DCN9t3jjpyX7AlIaUUpRoFUtlaBZHQDeAgyM1jy51fZQoaAZoCWgPQwhUVP1KZ/VtwJSGlFKUaBVLSWgWR0A3gCPIXCTEdX2UKGgGaAloD0MIWrkXmBVbU8CUhpRSlGgVS3loFkdAN4JOWSlnAnV9lChoBmgJaA9DCKK1os1xuF/AlIaUUpRoFUtVaBZHQDeFPpIMBp51fZQoaAZoCWgPQwjGbTSAt2NawJSGlFKUaBVLRmgWR0A3hXJo0ygxdX2UKGgGaAloD0MIpOAp5EoeXcCUhpRSlGgVS3toFkdAN5AvpQk5ZXV9lChoBmgJaA9DCNYCe0ykL1DAlIaUUpRoFUtaaBZHQDeZWhh6Skl1fZQoaAZoCWgPQwiLpUi+EsthwJSGlFKUaBVLV2gWR0A3oYKpkwvhdX2UKGgGaAloD0MIzhlR2lukfcCUhpRSlGgVS3hoFkdAN6GphnanJnV9lChoBmgJaA9DCA9eu7ThkFLAlIaUUpRoFUtBaBZHQDepzjm0VrR1fZQoaAZoCWgPQwgzpIriVR9lwJSGlFKUaBVLbmgWR0A3rYukDZDidX2UKGgGaAloD0MIFyr/Wt4KbcCUhpRSlGgVS3doFkdAN7WR7qptJnV9lChoBmgJaA9DCBNgWP78uGDAlIaUUpRoFUtoaBZHQDe5n003wTd1fZQoaAZoCWgPQwjRd7eyBCxxwJSGlFKUaBVLV2gWR0A3zyQPqcEvdX2UKGgGaAloD0MIB35Uw35oW8CUhpRSlGgVS2toFkdAN9f5LytmtnV9lChoBmgJaA9DCBpqFJJMNXHAlIaUUpRoFUtQaBZHQDfbh4t6HCZ1fZQoaAZoCWgPQwjdzr7yoDJrwJSGlFKUaBVLXmgWR0A33T72tdRjdX2UKGgGaAloD0MICwkYXR4Me8CUhpRSlGgVS3doFkdAN+bFn7Hhj3V9lChoBmgJaA9DCP+z5sdfjVjAlIaUUpRoFUtzaBZHQDfr8Muvllt1fZQoaAZoCWgPQwiYUMHhBXtQwJSGlFKUaBVLVmgWR0A368MNMGordX2UKGgGaAloD0MIFFysqMF4TMCUhpRSlGgVS0VoFkdAN/CxJNCZ4XV9lChoBmgJaA9DCP8gkiGHaHHAlIaUUpRoFUt7aBZHQDfwVqN6w+t1fZQoaAZoCWgPQwidEDrokiRgwJSGlFKUaBVLWWgWR0A39pAUtZmqdX2UKGgGaAloD0MISino9pJQdcCUhpRSlGgVS4FoFkdAN/r1uivgWXV9lChoBmgJaA9DCCu/DMaIUlbAlIaUUpRoFUtWaBZHQDf8Nz8xbjd1fZQoaAZoCWgPQwg1m8dhMBtmwJSGlFKUaBVLRmgWR0A3/g2606YFdX2UKGgGaAloD0MInnx6bMtdYsCUhpRSlGgVS05oFkdAOAEhV2iconV9lChoBmgJaA9DCB0EHa1qd3PAlIaUUpRoFUuGaBZHQDgDFR51Ng11fZQoaAZoCWgPQwiySumZXo1UwJSGlFKUaBVLPmgWR0A4IN5dGAkLdX2UKGgGaAloD0MIylLr/Ub5VMCUhpRSlGgVS0xoFkdAOCTMJQcghnV9lChoBmgJaA9DCDDxR1Fnl2/AlIaUUpRoFUtRaBZHQDgk2rGR3eN1fZQoaAZoCWgPQwi5wVCHFWVawJSGlFKUaBVLPmgWR0A4JigTRIBjdX2UKGgGaAloD0MI3T8WosN1csCUhpRSlGgVS19oFkdAOCuw9q1w53V9lChoBmgJaA9DCHpvDAHAImHAlIaUUpRoFUuRaBZHQDgrZzxPO6d1fZQoaAZoCWgPQwgsmzkkteRnwJSGlFKUaBVLQGgWR0A4MmqHXVbzdX2UKGgGaAloD0MIaW/whcm7WsCUhpRSlGgVSz9oFkdAODkSyt3fRHV9lChoBmgJaA9DCA1uawsPE3TAlIaUUpRoFUthaBZHQDhGgxrSE151fZQoaAZoCWgPQwiVu8/xkWlzwJSGlFKUaBVLXGgWR0A4RgNgBtDVdX2UKGgGaAloD0MIhGOWPckscMCUhpRSlGgVS05oFkdAOEwbEP1+RnV9lChoBmgJaA9DCB4YQPhQ61TAlIaUUpRoFUt5aBZHQDhNcVxjriV1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 8,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.9995,
|
82 |
+
"gae_lambda": 0.985,
|
83 |
+
"ent_coef": 0.015,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2312/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a29ed8bb8ba07c2565780e3716c06ed13dac77ebec4acda4ff83ba4cbfda7aac
|
3 |
+
size 87929
|
ppo-LunarLander-v2312/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1618b0737f9a3155fd5f4d70c9c2c9ed45e79c33422070ad0064761c53ee5e82
|
3 |
+
size 43393
|
ppo-LunarLander-v2312/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2312/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (267 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -236.41373794903046, "std_reward": 132.3015734412405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T23:12:35.169359"}
|