Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 911.95 +/- 278.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c035b71ad2968206ed440e77077a0384069effde866266cb2254f2830e40976
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2fcf66e430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2fcf66e4c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2fcf66e550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2fcf66e5e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2fcf66e670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2fcf66e700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2fcf66e790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2fcf66e820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2fcf66e8b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2fcf66e940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2fcf66e9d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2fcf66ea60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f2fcf66a810>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677694308652503037,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACosXz/cZRE/Ig7xPboKCkDAlJc+WaCEvzSGjr/eGRS/7A9Pv1INt79o5JG/YGSVvGc5u78g6JI/k3cIP0BuAcBvQee/mdr8P3EclL77PGS/r3CiP9zHlD/BF5u+0lbMP3c7fr/uRPw+jhWzPntpvL8ublC/GEq6P+TN87/evHO/aNg8wKMFJL+ASlK/enAkPw7Emb/bgu6+dmo5vy1IXD2rT5y9BYGqv21GKj/m9E+7mT6Fv9u7hMB6uGy+GMzeP0sVtT8fKuA/bRSVv58l+7vX44A/7kT8Po4Vsz57aby/oX17v8oLuz8Bh/i/fTVEPzcWwj/lDUO+zrm2PojhKL0dJoy+CgJEv52yOj7Y4YE/ldG7P/4Qkb9Shi4/UNA+vsovhz7FzJS/zTFePzy91z+wtlS/X8+gv6DIZr8T55S/1+OAP+5E/D6OFbM+e2m8v2lq374NhqC/g/klP2O2ED/IQ2u/YfqrP42CLD99bbU9ol4/vl8t7r+614O/+ZI5Pk7kyb+suVg/YjMEvxLxu7/sVALA8tYSPhSNFz8t+K4/liLVP6lyAb/Hd2u+XVwUP3c7fr/uRPw+jhWzPq3qLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABK86w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVjS4PQAAAACFRtm/AAAAAOVywz0AAAAArQgBQAAAAAAHRaY9AAAAAEzU+z8AAAAABGkMvgAAAAC3j9m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf+gutgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLxBljwAAAAAeqravwAAAAAVt6O8AAAAAOc75T8AAAAAyIcHvgAAAAC/OuE/AAAAAN1Jhb0AAAAA21LivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADO8lbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDsUrs9AAAAAB5N5b8AAAAAgUn4vAAAAAAZWeg/AAAAAOVc/70AAAAAbOIAQAAAAADfgHq9AAAAADWm2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiK2S2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV4TtvQAAAAD179+/AAAAAENx/L0AAAAAaDvaPwAAAADavcm9AAAAAEAQ/T8AAAAAHBtEPQAAAADuI/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4GO/k/8l6MAWyUTegDjAF0lEdArk06mALApXV9lChoBkdAjcyy5y2hI2gHTegDaAhHQK5Ns0x/NJR1fZQoaAZHQIqMe4TbnHNoB03oA2gIR0CuTjWpAD7qdX2UKGgGR0CLtBGWldkbaAdN6ANoCEdArljHSjQAuXV9lChoBkdAjmwkAYHgP2gHTegDaAhHQK5emMy8BdV1fZQoaAZHQIf5a5/b0vpoB03oA2gIR0CuXwpd0JWvdX2UKGgGR0CRRSog3cYZaAdN6ANoCEdArl+IID5j6XV9lChoBkdAi8mjhcZ9/mgHTegDaAhHQK5nItGNJe51fZQoaAZHQImkhs2vStxoB03oA2gIR0CubBYNiH6/dX2UKGgGR0CJ/IzN2TxHaAdN6ANoCEdArmyLs+mm+HV9lChoBkdAkEDqwpvxY2gHTegDaAhHQK5tA/B3zMB1fZQoaAZHQJTKkbLlmvpoB03oA2gIR0Cud6RN7BwddX2UKGgGR0CLyVPSlWOqaAdN6ANoCEdArn04Yk3S8nV9lChoBkdAks9wgHNX5mgHTegDaAhHQK59r2GIsRR1fZQoaAZHQIjvoDxLCepoB03oA2gIR0CufivWQOnVdX2UKGgGR0CTZKaVD8cdaAdN6ANoCEdAroXT94u9OHV9lChoBkdAkZ+ZvP1L8WgHTegDaAhHQK6KuTTvy9V1fZQoaAZHQIfdfHFPznRoB03oA2gIR0Cuiy/zz3AVdX2UKGgGR0CRs4aIN3GGaAdN6ANoCEdArouydjG1hXV9lChoBkdAkgz5wS8J2WgHTegDaAhHQK6WkyeI2wV1fZQoaAZHQIiwh3FDOTtoB03oA2gIR0CunA/jCHh1dX2UKGgGR0CEqqrPMSsbaAdN6ANoCEdArpyQuqWC3HV9lChoBkdAgtxphnanJmgHTegDaAhHQK6dCuQp4KR1fZQoaAZHQI3u92icoYxoB03oA2gIR0CupN6ef7JodX2UKGgGR0CQH4LGaQV9aAdN6ANoCEdArqnVYuCf6HV9lChoBkdAkelTMNc4YWgHTegDaAhHQK6qWDtgKF91fZQoaAZHQI9J2k30f5loB03oA2gIR0Cuqtc63iJgdX2UKGgGR0CVQNqtozvaaAdN6ANoCEdArrZrVnVXm3V9lChoBkdAkj5p3cHnlmgHTegDaAhHQK67UrvLHMl1fZQoaAZHQJDr+1b7j1hoB03oA2gIR0Cuu8nCO3lTdX2UKGgGR0CQo56KLsKLaAdN6ANoCEdArrxMu14PgHV9lChoBkdAkkLF0DEFXGgHTegDaAhHQK7D5PSlWOp1fZQoaAZHQJGg0hY/3WZoB03oA2gIR0CuyN8EeQuFdX2UKGgGR0CR0NtUn5SFaAdN6ANoCEdArslVDtw71nV9lChoBkdAkHJxpQDV6WgHTegDaAhHQK7J17iQ1aZ1fZQoaAZHQJM2YtqYZ2poB03oA2gIR0Cu1Sh60IC2dX2UKGgGR0CPhJ7655JLaAdN6ANoCEdArtoa6MBIWnV9lChoBkdAkzTH+yZ8bGgHTegDaAhHQK7akgXdj5N1fZQoaAZHQJJBmmEXcg1oB03oA2gIR0Cu2xdVNpM6dX2UKGgGR0CCPldepn6EaAdN6ANoCEdAruKKDf3vhXV9lChoBkdAkr0KfJ3gUGgHTegDaAhHQK7niHUtqYZ1fZQoaAZHQJLpwI4VARloB03oA2gIR0Cu5/uK4x1xdX2UKGgGR0CVK0QJHAh0aAdN6ANoCEdAruh21SflIXV9lChoBkdAlIohHbypaWgHTegDaAhHQK7z0d9Ujs51fZQoaAZHQJSJeBqbjLloB03oA2gIR0Cu+MB24d6tdX2UKGgGR0CUmEbqyGBXaAdN6ANoCEdArvk58OTaCnV9lChoBkdAka4V/hESd2gHTegDaAhHQK75tgn+hoN1fZQoaAZHQJPfZLbpNbloB03oA2gIR0CvAXasIVuadX2UKGgGR0CSp8fL9uP4aAdN6ANoCEdArwZo7cO9WnV9lChoBkdAilcQf6oES2gHTegDaAhHQK8G3kVeruJ1fZQoaAZHQJEtivTw2EVoB03oA2gIR0CvB6YoqkM1dX2UKGgGR0CS1JFtsN2DaAdN6ANoCEdArxLR64UeuHV9lChoBkdAkETvzreImGgHTegDaAhHQK8X0XUH6dl1fZQoaAZHQJEo0tGus91oB03oA2gIR0CvGEbrLQokdX2UKGgGR0CRbigi/wiJaAdN6ANoCEdArxjEwxnFpHV9lChoBkdAjsSF85S3s2gHTegDaAhHQK8gfvjwQUZ1fZQoaAZHQIoNy1Cw8nxoB03oA2gIR0CvJZxe1KGtdX2UKGgGR0CQrsbb1yvLaAdN6ANoCEdAryZPRArxzHV9lChoBkdAiEP8+RoysWgHTegDaAhHQK8nCla8pTd1fZQoaAZHQJQezSG8EmpoB03oA2gIR0CvMgo9TxXodX2UKGgGR0CTgm6tT1kEaAdN6ANoCEdArzbnKISDiHV9lChoBkdAlABiO3lS0mgHTegDaAhHQK83Y1stTUB1fZQoaAZHQJJPbfm9xqBoB03oA2gIR0CvN+X225QQdX2UKGgGR0CQ56AtFrmAaAdN6ANoCEdArz+UX531SXV9lChoBkdAkmxNnPE872gHTegDaAhHQK9E5LNfPX11fZQoaAZHQJTeTQgLZzxoB03oA2gIR0CvRZk6kqMFdX2UKGgGR0B401mI0qH5aAdN6ANoCEdAr0ZpyQxN7HV9lChoBkdAjPFq4pc5bWgHTegDaAhHQK9Q7ofSx7l1fZQoaAZHQJYWfxUedTZoB03oA2gIR0CvVfwNLDhtdX2UKGgGR0CJVO0XP7emaAdN6ANoCEdAr1Zv1Hvtt3V9lChoBkdAldJiCnP3SWgHTegDaAhHQK9W57FbVz91fZQoaAZHQJKK4iV0Lc9oB03oA2gIR0CvXqGrbQC0dX2UKGgGR0CTItjENvwWaAdN6ANoCEdAr2QcZHd43XV9lChoBkdAkwlGOp84P2gHTegDaAhHQK9kyxCY1Hh1fZQoaAZHQJWwdXS0BwNoB03oA2gIR0CvZYTIFNcodX2UKGgGR0CQQV95Qgs9aAdN6ANoCEdAr2/PPqs2enV9lChoBkdAknxfb48EFGgHTegDaAhHQK90xXGwRoR1fZQoaAZHQIkT4U5+6RRoB03oA2gIR0CvdTixFAmidX2UKGgGR0CPxdlaKUFCaAdN6ANoCEdAr3W42AG0NXV9lChoBkdAjs8qKpDNQmgHTegDaAhHQK99XYuCf6J1fZQoaAZHQJH0V3ljmS1oB03oA2gIR0Cvg0WA5JbudX2UKGgGR0CQ2XhYNiH7aAdN6ANoCEdAr4P+0b961XV9lChoBkdAkY7+MqBmPGgHTegDaAhHQK+EvuMMqjJ1fZQoaAZHQI8pRRjz7MxoB03oA2gIR0CvjrjeCTUzdX2UKGgGR0CQnwc5bQkYaAdN6ANoCEdAr5PB11W8y3V9lChoBkdAkE7dgnc+JWgHTegDaAhHQK+UNCqp97Z1fZQoaAZHQJJMTHAAQxxoB03oA2gIR0CvlLba7EpBdX2UKGgGR0CSs9t16mfoaAdN6ANoCEdAr5xjgydnTXV9lChoBkdAkyA+1rqMWGgHTegDaAhHQK+ij+MqBmR1fZQoaAZHQJIXBSvTw2FoB03oA2gIR0Cvo0GQbMoudX2UKGgGR0CQE6OHFglXaAdN6ANoCEdAr6QLIcR15nV9lChoBkdAkZUrA1vVE2gHTegDaAhHQK+tvF1B+nZ1fZQoaAZHQJGxXBl+VkdoB03oA2gIR0CvsqJMg2ZRdX2UKGgGR0CRzGkrf+CLaAdN6ANoCEdAr7MV+LFXJnV9lChoBkdAj7NVWS2Yv2gHTegDaAhHQK+zlugHu7Z1fZQoaAZHQJD3qAQQL/loB03oA2gIR0Cvu0EGJN0vdX2UKGgGR0CVMrPbfxc3aAdN6ANoCEdAr8GgAOrhi3V9lChoBkdAk3ISgbp/w2gHTegDaAhHQK/CWjxCpm51fZQoaAZHQJL5MJ8fFJhoB03oA2gIR0CvwydXT3IudX2UKGgGR0CTWhT/ACXAaAdN6ANoCEdAr8y+SGJvYXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6df4e7eae884c84c519fae72048ced29d1a39fa5508a9dac3ea1c9f2473c0730
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dcc32e483a99ce9af6f8b2fb8c8665d4c1b4d79b0e083adb5db7ff02be84555
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2fcf66e430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2fcf66e4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2fcf66e550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2fcf66e5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f2fcf66e670>", "forward": "<function ActorCriticPolicy.forward at 0x7f2fcf66e700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2fcf66e790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2fcf66e820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2fcf66e8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2fcf66e940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2fcf66e9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2fcf66ea60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2fcf66a810>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677694308652503037, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACosXz/cZRE/Ig7xPboKCkDAlJc+WaCEvzSGjr/eGRS/7A9Pv1INt79o5JG/YGSVvGc5u78g6JI/k3cIP0BuAcBvQee/mdr8P3EclL77PGS/r3CiP9zHlD/BF5u+0lbMP3c7fr/uRPw+jhWzPntpvL8ublC/GEq6P+TN87/evHO/aNg8wKMFJL+ASlK/enAkPw7Emb/bgu6+dmo5vy1IXD2rT5y9BYGqv21GKj/m9E+7mT6Fv9u7hMB6uGy+GMzeP0sVtT8fKuA/bRSVv58l+7vX44A/7kT8Po4Vsz57aby/oX17v8oLuz8Bh/i/fTVEPzcWwj/lDUO+zrm2PojhKL0dJoy+CgJEv52yOj7Y4YE/ldG7P/4Qkb9Shi4/UNA+vsovhz7FzJS/zTFePzy91z+wtlS/X8+gv6DIZr8T55S/1+OAP+5E/D6OFbM+e2m8v2lq374NhqC/g/klP2O2ED/IQ2u/YfqrP42CLD99bbU9ol4/vl8t7r+614O/+ZI5Pk7kyb+suVg/YjMEvxLxu7/sVALA8tYSPhSNFz8t+K4/liLVP6lyAb/Hd2u+XVwUP3c7fr/uRPw+jhWzPq3qLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABK86w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVjS4PQAAAACFRtm/AAAAAOVywz0AAAAArQgBQAAAAAAHRaY9AAAAAEzU+z8AAAAABGkMvgAAAAC3j9m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf+gutgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLxBljwAAAAAeqravwAAAAAVt6O8AAAAAOc75T8AAAAAyIcHvgAAAAC/OuE/AAAAAN1Jhb0AAAAA21LivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADO8lbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDsUrs9AAAAAB5N5b8AAAAAgUn4vAAAAAAZWeg/AAAAAOVc/70AAAAAbOIAQAAAAADfgHq9AAAAADWm2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiK2S2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV4TtvQAAAAD179+/AAAAAENx/L0AAAAAaDvaPwAAAADavcm9AAAAAEAQ/T8AAAAAHBtEPQAAAADuI/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4GO/k/8l6MAWyUTegDjAF0lEdArk06mALApXV9lChoBkdAjcyy5y2hI2gHTegDaAhHQK5Ns0x/NJR1fZQoaAZHQIqMe4TbnHNoB03oA2gIR0CuTjWpAD7qdX2UKGgGR0CLtBGWldkbaAdN6ANoCEdArljHSjQAuXV9lChoBkdAjmwkAYHgP2gHTegDaAhHQK5emMy8BdV1fZQoaAZHQIf5a5/b0vpoB03oA2gIR0CuXwpd0JWvdX2UKGgGR0CRRSog3cYZaAdN6ANoCEdArl+IID5j6XV9lChoBkdAi8mjhcZ9/mgHTegDaAhHQK5nItGNJe51fZQoaAZHQImkhs2vStxoB03oA2gIR0CubBYNiH6/dX2UKGgGR0CJ/IzN2TxHaAdN6ANoCEdArmyLs+mm+HV9lChoBkdAkEDqwpvxY2gHTegDaAhHQK5tA/B3zMB1fZQoaAZHQJTKkbLlmvpoB03oA2gIR0Cud6RN7BwddX2UKGgGR0CLyVPSlWOqaAdN6ANoCEdArn04Yk3S8nV9lChoBkdAks9wgHNX5mgHTegDaAhHQK59r2GIsRR1fZQoaAZHQIjvoDxLCepoB03oA2gIR0CufivWQOnVdX2UKGgGR0CTZKaVD8cdaAdN6ANoCEdAroXT94u9OHV9lChoBkdAkZ+ZvP1L8WgHTegDaAhHQK6KuTTvy9V1fZQoaAZHQIfdfHFPznRoB03oA2gIR0Cuiy/zz3AVdX2UKGgGR0CRs4aIN3GGaAdN6ANoCEdArouydjG1hXV9lChoBkdAkgz5wS8J2WgHTegDaAhHQK6WkyeI2wV1fZQoaAZHQIiwh3FDOTtoB03oA2gIR0CunA/jCHh1dX2UKGgGR0CEqqrPMSsbaAdN6ANoCEdArpyQuqWC3HV9lChoBkdAgtxphnanJmgHTegDaAhHQK6dCuQp4KR1fZQoaAZHQI3u92icoYxoB03oA2gIR0CupN6ef7JodX2UKGgGR0CQH4LGaQV9aAdN6ANoCEdArqnVYuCf6HV9lChoBkdAkelTMNc4YWgHTegDaAhHQK6qWDtgKF91fZQoaAZHQI9J2k30f5loB03oA2gIR0Cuqtc63iJgdX2UKGgGR0CVQNqtozvaaAdN6ANoCEdArrZrVnVXm3V9lChoBkdAkj5p3cHnlmgHTegDaAhHQK67UrvLHMl1fZQoaAZHQJDr+1b7j1hoB03oA2gIR0Cuu8nCO3lTdX2UKGgGR0CQo56KLsKLaAdN6ANoCEdArrxMu14PgHV9lChoBkdAkkLF0DEFXGgHTegDaAhHQK7D5PSlWOp1fZQoaAZHQJGg0hY/3WZoB03oA2gIR0CuyN8EeQuFdX2UKGgGR0CR0NtUn5SFaAdN6ANoCEdArslVDtw71nV9lChoBkdAkHJxpQDV6WgHTegDaAhHQK7J17iQ1aZ1fZQoaAZHQJM2YtqYZ2poB03oA2gIR0Cu1Sh60IC2dX2UKGgGR0CPhJ7655JLaAdN6ANoCEdArtoa6MBIWnV9lChoBkdAkzTH+yZ8bGgHTegDaAhHQK7akgXdj5N1fZQoaAZHQJJBmmEXcg1oB03oA2gIR0Cu2xdVNpM6dX2UKGgGR0CCPldepn6EaAdN6ANoCEdAruKKDf3vhXV9lChoBkdAkr0KfJ3gUGgHTegDaAhHQK7niHUtqYZ1fZQoaAZHQJLpwI4VARloB03oA2gIR0Cu5/uK4x1xdX2UKGgGR0CVK0QJHAh0aAdN6ANoCEdAruh21SflIXV9lChoBkdAlIohHbypaWgHTegDaAhHQK7z0d9Ujs51fZQoaAZHQJSJeBqbjLloB03oA2gIR0Cu+MB24d6tdX2UKGgGR0CUmEbqyGBXaAdN6ANoCEdArvk58OTaCnV9lChoBkdAka4V/hESd2gHTegDaAhHQK75tgn+hoN1fZQoaAZHQJPfZLbpNbloB03oA2gIR0CvAXasIVuadX2UKGgGR0CSp8fL9uP4aAdN6ANoCEdArwZo7cO9WnV9lChoBkdAilcQf6oES2gHTegDaAhHQK8G3kVeruJ1fZQoaAZHQJEtivTw2EVoB03oA2gIR0CvB6YoqkM1dX2UKGgGR0CS1JFtsN2DaAdN6ANoCEdArxLR64UeuHV9lChoBkdAkETvzreImGgHTegDaAhHQK8X0XUH6dl1fZQoaAZHQJEo0tGus91oB03oA2gIR0CvGEbrLQokdX2UKGgGR0CRbigi/wiJaAdN6ANoCEdArxjEwxnFpHV9lChoBkdAjsSF85S3s2gHTegDaAhHQK8gfvjwQUZ1fZQoaAZHQIoNy1Cw8nxoB03oA2gIR0CvJZxe1KGtdX2UKGgGR0CQrsbb1yvLaAdN6ANoCEdAryZPRArxzHV9lChoBkdAiEP8+RoysWgHTegDaAhHQK8nCla8pTd1fZQoaAZHQJQezSG8EmpoB03oA2gIR0CvMgo9TxXodX2UKGgGR0CTgm6tT1kEaAdN6ANoCEdArzbnKISDiHV9lChoBkdAlABiO3lS0mgHTegDaAhHQK83Y1stTUB1fZQoaAZHQJJPbfm9xqBoB03oA2gIR0CvN+X225QQdX2UKGgGR0CQ56AtFrmAaAdN6ANoCEdArz+UX531SXV9lChoBkdAkmxNnPE872gHTegDaAhHQK9E5LNfPX11fZQoaAZHQJTeTQgLZzxoB03oA2gIR0CvRZk6kqMFdX2UKGgGR0B401mI0qH5aAdN6ANoCEdAr0ZpyQxN7HV9lChoBkdAjPFq4pc5bWgHTegDaAhHQK9Q7ofSx7l1fZQoaAZHQJYWfxUedTZoB03oA2gIR0CvVfwNLDhtdX2UKGgGR0CJVO0XP7emaAdN6ANoCEdAr1Zv1Hvtt3V9lChoBkdAldJiCnP3SWgHTegDaAhHQK9W57FbVz91fZQoaAZHQJKK4iV0Lc9oB03oA2gIR0CvXqGrbQC0dX2UKGgGR0CTItjENvwWaAdN6ANoCEdAr2QcZHd43XV9lChoBkdAkwlGOp84P2gHTegDaAhHQK9kyxCY1Hh1fZQoaAZHQJWwdXS0BwNoB03oA2gIR0CvZYTIFNcodX2UKGgGR0CQQV95Qgs9aAdN6ANoCEdAr2/PPqs2enV9lChoBkdAknxfb48EFGgHTegDaAhHQK90xXGwRoR1fZQoaAZHQIkT4U5+6RRoB03oA2gIR0CvdTixFAmidX2UKGgGR0CPxdlaKUFCaAdN6ANoCEdAr3W42AG0NXV9lChoBkdAjs8qKpDNQmgHTegDaAhHQK99XYuCf6J1fZQoaAZHQJH0V3ljmS1oB03oA2gIR0Cvg0WA5JbudX2UKGgGR0CQ2XhYNiH7aAdN6ANoCEdAr4P+0b961XV9lChoBkdAkY7+MqBmPGgHTegDaAhHQK+EvuMMqjJ1fZQoaAZHQI8pRRjz7MxoB03oA2gIR0CvjrjeCTUzdX2UKGgGR0CQnwc5bQkYaAdN6ANoCEdAr5PB11W8y3V9lChoBkdAkE7dgnc+JWgHTegDaAhHQK+UNCqp97Z1fZQoaAZHQJJMTHAAQxxoB03oA2gIR0CvlLba7EpBdX2UKGgGR0CSs9t16mfoaAdN6ANoCEdAr5xjgydnTXV9lChoBkdAkyA+1rqMWGgHTegDaAhHQK+ij+MqBmR1fZQoaAZHQJIXBSvTw2FoB03oA2gIR0Cvo0GQbMoudX2UKGgGR0CQE6OHFglXaAdN6ANoCEdAr6QLIcR15nV9lChoBkdAkZUrA1vVE2gHTegDaAhHQK+tvF1B+nZ1fZQoaAZHQJGxXBl+VkdoB03oA2gIR0CvsqJMg2ZRdX2UKGgGR0CRzGkrf+CLaAdN6ANoCEdAr7MV+LFXJnV9lChoBkdAj7NVWS2Yv2gHTegDaAhHQK+zlugHu7Z1fZQoaAZHQJD3qAQQL/loB03oA2gIR0Cvu0EGJN0vdX2UKGgGR0CVMrPbfxc3aAdN6ANoCEdAr8GgAOrhi3V9lChoBkdAk3ISgbp/w2gHTegDaAhHQK/CWjxCpm51fZQoaAZHQJL5MJ8fFJhoB03oA2gIR0CvwydXT3IudX2UKGgGR0CTWhT/ACXAaAdN6ANoCEdAr8y+SGJvYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c7242f054a084493f2bceb42b87eb8408f5fbd5c0e80f1da5e1dc5d2d9098c7
|
3 |
+
size 1067724
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 911.9496072238442, "std_reward": 278.04935658060066, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-01T19:24:52.256928"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09ae230e7b23cfdde4b179d8a42ad61d7e2e13be13695d785fb94411096b15ca
|
3 |
+
size 2136
|