File size: 2,064 Bytes
732b48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
---
# Cross-Encoder for Word Sense Relationships Classification

This model was trained on word sense relationships extracted by WordNet for the [semantic change type classification](https://github.com/ChangeIsKey/change-type-classification).

The model can be used to detect which kind of relatioships (among homonymy, antonymy, hypernonym, hyponymy, and co-hypnomy) intercur between word senses: Given a pair of word sense definitions, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. 

The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)


## Usage with Transformers

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model = AutoModelForSequenceClassification.from_pretrained('model_name')
tokenizer = AutoTokenizer.from_pretrained('model_name')

features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'],  padding=True, truncation=True, return_tensors="pt")

model.eval()
with torch.no_grad():
    scores = model(**features).logits
    print(scores)
```


## Usage with SentenceTransformers

The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('model_name', max_length=512)
labels = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
```


## Performance
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the 

![alt text](https://github.com/ChangeIsKey/change-type-classification/blob/main/lsc_ctd_benchmark_snippet_table.png "t")