Pierluigi Cassotti commited on
Commit
6d05d26
·
2 Parent(s): edeeb1d 9423ffb
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ widget:
4
+ - text: "drawing of tintin in a shop"
5
+ output:
6
+ url: "https://github.com/ChangeIsKey/change-type-classification/blob/main/lsc_ctd_benchmark_snippet_table.png"
7
+ ---
8
+ # Cross-Encoder for Word Sense Relationships Classification
9
+
10
+ This model was trained on word sense relationships extracted by WordNet for the [semantic change type classification](https://github.com/ChangeIsKey/change-type-classification).
11
+
12
+ The model can be used to detect which kind of relatioships (among homonymy, antonymy, hypernonym, hyponymy, and co-hypnomy) intercur between word senses: Given a pair of word sense definitions, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order.
13
+
14
+ The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
15
+
16
+ <b> Citation </b>
17
+
18
+ ```
19
+ @inproceedings{change_type_classification_cassotti_2024,
20
+ author = {Pierluigi Cassotti and
21
+ Stefano De Pascale and
22
+ Nina Tahmasebi},
23
+ title = {Using Synchronic Definitions and Semantic Relations to Classify Semantic Change Types},
24
+ year = {2024},
25
+ }
26
+ ```
27
+
28
+
29
+ ## Usage with Transformers
30
+
31
+ ```python
32
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
33
+ import torch
34
+
35
+ model = AutoModelForSequenceClassification.from_pretrained('model_name')
36
+ tokenizer = AutoTokenizer.from_pretrained('model_name')
37
+
38
+ features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
39
+
40
+ model.eval()
41
+ with torch.no_grad():
42
+ scores = model(**features).logits
43
+ print(scores)
44
+ ```
45
+
46
+
47
+ ## Usage with SentenceTransformers
48
+
49
+ The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
50
+ ```python
51
+ from sentence_transformers import CrossEncoder
52
+ model = CrossEncoder('model_name', max_length=512)
53
+ labels = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
54
+ ```
55
+
56
+
57
+ ## Performance
58
+ In the following table, we provide various pre-trained Cross-Encoders together with their performance on the
59
+
60
+ <Gallery />