File size: 25,765 Bytes
db6ee6a 6edd88e dc94d87 db6ee6a 6edd88e db6ee6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
from LLAVA_Biovil.biovil_t.model import ImageModel
from LLAVA_Biovil.biovil_t.pretrained import _download_biovil_t_image_model_weights
from LLAVA_Biovil.biovil_t.types import ImageEncoderType
from LLAVA_Biovil.llava.model.multimodal_encoder.builder import build_vision_tower
from LLAVA_Biovil.llava.model.multimodal_projector.builder import build_vision_projector, build_image_pooler
from LLAVA_Biovil.llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class LlavaMetaModel:
def __init__(self, config, mv_type='none'):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
self.image_pooler = build_image_pooler(config) if "pool" in mv_type else None
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_image_pooler(self):
return self.image_pooler
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
self.config.mv_type = getattr(model_args, 'mv_type', False)
if self.get_vision_tower() is None:
if self.config.mm_vision_tower == 'biovil':
biovilt_checkpoint_path = _download_biovil_t_image_model_weights()
model_type = ImageEncoderType.RESNET50_MULTI_IMAGE
vision_tower = ImageModel(img_encoder_type=model_type,
joint_feature_size=128,
pretrained_model_path=biovilt_checkpoint_path)
# freeze vision_tower layers
for p in vision_tower.parameters():
p.requires_grad = False
else:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size if self.config.mm_vision_tower != 'biovil' else vision_tower.feature_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None or model_args.vision_tower == 'biovil': #for biovil wrong weights are loaded from model shards, so we need to overwrite the vision projector again
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
# unfreeze image pooler
if self.image_pooler is not None:
for p in self.image_pooler.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
if self.get_model().config.mm_vision_tower == 'biovil':
image_features = image_features.patch_embeddings
# flatten
image_features = image_features.flatten(2).transpose(1,2)
image_features = self.get_model().mm_projector(image_features)
return image_features
def pad_embeddings(self, embeddings, num_imgs_present=None, num_imgs_past=None, padding_value=0):
"""
Pad the embeddings to have the same number in each batch.
Args:
- embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim).
- padding_value (float): Value to use for padding.
Returns:
- Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim).
- Tensor: Mask indicating real data (1) and padding (0).
"""
batch_size = len(embeddings)
img_len = embeddings[0].shape[1]
embedding_dim = embeddings[0].shape[2]
max_num_images = max(emb.shape[0] for emb in embeddings)
# Initialize padded embeddings and mask
padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device)
mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device)
# create token type ids with 0 for present 1 for past, 2 for padding, of shape (batch_size, max_num_images * img_len)
token_type_ids = torch.zeros(batch_size, max_num_images * img_len, dtype=torch.long, device=embeddings[0].device)
if num_imgs_present is not None:
# set token type ids for present to 1, for past to 2, 0 is padded elements
for idx, (present_len, past_len) in enumerate(zip(num_imgs_present, num_imgs_past)):
token_type_ids[idx, :present_len*img_len] = 1
token_type_ids[idx, present_len*img_len:(present_len+past_len)*img_len] = 2
# Pad each item in the batch
for idx, emb in enumerate(embeddings):
num_images = emb.shape[0]
padded_embeddings[idx, :num_images] = emb
mask[idx, :num_images*img_len] = 1
return padded_embeddings.flatten(1,2), mask, token_type_ids
def pad_embeddings_mv(self, embeddings, padding_value=0):
"""
Pad the embeddings to have the same number in each batch.
Args:
- embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim).
- padding_value (float): Value to use for padding.
Returns:
- Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim).
- Tensor: Mask indicating real data (1) and padding (0).
"""
batch_size = len(embeddings)
img_len = embeddings[0].shape[1]
embedding_dim = embeddings[0].shape[2]
max_num_images = max(emb.shape[0] for emb in embeddings)
# Initialize padded embeddings and mask
padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device)
mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device)
# Pad each item in the batch
for idx, emb in enumerate(embeddings):
num_images = emb.shape[0]
padded_embeddings[idx, :num_images] = emb
mask[idx, :num_images*img_len] = 1
return padded_embeddings.flatten(1,2), mask
def encode_images_pooled(self, images, split_sizes, num_imgs_present, num_imgs_past, mv_type="pool_all"):
image_pooler = self.get_image_pooler()
image_features = self.get_model().get_vision_tower()(images)
if self.get_model().config.mm_vision_tower == 'biovil':
image_features = image_features.patch_embeddings
# flatten
image_features = image_features.flatten(2).transpose(1,2)
if split_sizes is not None:
image_features = torch.split(image_features, split_sizes, dim=0)
if mv_type == "pool_all":
# merge present and past per batch
present_features = [image_features[i] for i in range(len(num_imgs_present))]
past_features = []
i = 0
for num_imgs_elem in num_imgs_past:
if num_imgs_elem != 0:
past_features.append(image_features[i+len(num_imgs_present)])
i += 1
else:
past_features.append(None)
all_img_features = []
for idx, (batch_num_present, batch_num_past) in enumerate(zip(num_imgs_present, num_imgs_past)):
if batch_num_past == 0:
all_img_features.append(present_features[idx])
else:
all_img_features.append(torch.cat((present_features[idx], past_features[idx]), dim=0))
all_img_features, mask, token_type_ids = self.pad_embeddings(all_img_features, num_imgs_present, num_imgs_past)
all_img_features = image_pooler(all_img_features, mask, token_type_ids)
elif mv_type == "pool_concat":
present_features = [image_features[i] for i in range(len(num_imgs_present))]
past_features = [image_features[i+len(num_imgs_present)] for i in range(len(image_features)-len(num_imgs_present))]
present_features, mask_present, _ = self.pad_embeddings(present_features)
past_features, mask_past, _ = self.pad_embeddings(past_features)
present_features = image_pooler(present_features, mask_present)
past_features = image_pooler(past_features, mask_past)
# TODO maybe max pool on past features to save tokens
# concat present and past per batch if past is not empty
all_img_features = []
idx_present = 0
idx_past = 0
for batch_num_present, batch_num_past in zip(num_imgs_present, num_imgs_past):
if batch_num_past == 0:
all_img_features.append(present_features[idx_present])
idx_present += 1
else:
all_img_features.append(torch.cat((present_features[idx_present], past_features[idx_past]), dim=0))
idx_present += 1
idx_past += 1
else:
raise NotImplementedError
if type(all_img_features) is list:
split_sizes = [image.shape[0] for image in all_img_features]
all_img_features = self.get_model().mm_projector(torch.cat(all_img_features, dim=0))
all_img_features = torch.split(all_img_features, split_sizes, dim=0)
else:
all_img_features = self.get_model().mm_projector(all_img_features)
return all_img_features
def encode_images_pooled_mv(self, images, split_sizes):
image_pooler = self.get_image_pooler()
image_features = self.get_model().get_vision_tower()(images)
if split_sizes is not None:
image_features = torch.split(image_features, split_sizes, dim=0)
image_features, mask = self.pad_embeddings_mv(image_features)
image_features = image_pooler(image_features, mask)
else:
mask = torch.ones((image_features.shape[0], image_features.shape[1]), dtype=torch.bool, device=image_features[0].device)
image_features = image_pooler(image_features, mask)
image_features = self.get_model().mm_projector(image_features)
return image_features
def get_image_pooler(self):
return self.get_model().get_image_pooler()
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, prev_images=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
if getattr(self.config, 'mv_type') == "concat":
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
if getattr(self.config, 'mv_type') == "pool_all":
concat_images = torch.cat((torch.cat([image for image in images], dim=0), torch.cat([image for image in prev_images if image is not None], dim=0))) # first present, then past, all will be merged
split_sizes = [image.shape[0] for image in images]+ [image.shape[0] for image in prev_images if image is not None]
num_imgs_present = [image.shape[0] if image is not None else 0 for image in images]
num_imgs_past = [image.shape[0] if image is not None else 0 for image in prev_images]
image_features = self.encode_images_pooled(concat_images, split_sizes, num_imgs_present, num_imgs_past, "pool_all")
if getattr(self.config, 'mv_type') == "pool_concat": # TODO make sure to allow empty past -> shorter sequence
concat_images = torch.cat((torch.cat([image for image in images], dim=0), torch.cat([image for image in prev_images if image is not None], dim=0))) # first present, then past, all will be merged
split_sizes = [image.shape[0] for image in images]+ [image.shape[0] for image in prev_images if image is not None]
num_imgs_present = [image.shape[0] if image is not None else 0 for image in images]
num_imgs_past = [image.shape[0] if image is not None else 0 for image in prev_images]
image_features = self.encode_images_pooled(concat_images, split_sizes, num_imgs_present, num_imgs_past, "pool_concat")
if getattr(self.config, 'mv_type') == "pool": #no past images
concat_images = torch.cat([image for image in images], dim=0)
split_sizes = [image.shape[0] for image in images]
image_features = self.encode_images_pooled_mv(concat_images, split_sizes)
else:
if hasattr(self.config, 'mv_type') and getattr(self.config, 'mv_type') == "pool_all":
image_features = self.encode_images_pooled(images, None).to(self.device)
elif hasattr(self.config, 'mv_type') and getattr(self.config, 'mv_type') == "pool":
image_features = self.encode_images_pooled_mv(images, None).to(self.device)
else:
image_features = self.encode_images(images).to(self.device)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) #TODO throws GPU error
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
max_len_orig = max(x.shape[0] for x in new_input_embeds)
if max_len_orig > tokenizer_model_max_length:
print(f"Truncating sequences of len {max_len_orig} to {tokenizer_model_max_length} to fit the model's input length")
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
|