File size: 25,765 Bytes
db6ee6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd88e
 
 
dc94d87
 
db6ee6a
6edd88e
db6ee6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.
from abc import ABC, abstractmethod

import torch

from LLAVA_Biovil.biovil_t.model import ImageModel
from LLAVA_Biovil.biovil_t.pretrained import _download_biovil_t_image_model_weights
from LLAVA_Biovil.biovil_t.types import ImageEncoderType
from LLAVA_Biovil.llava.model.multimodal_encoder.builder import build_vision_tower
from LLAVA_Biovil.llava.model.multimodal_projector.builder import build_vision_projector, build_image_pooler

from LLAVA_Biovil.llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN



class LlavaMetaModel:

    def __init__(self, config, mv_type='none'):
        super(LlavaMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)
            self.image_pooler = build_image_pooler(config) if "pool" in mv_type else None

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_image_pooler(self):
        return self.image_pooler

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter

        self.config.mm_vision_tower = vision_tower
        self.config.mv_type = getattr(model_args, 'mv_type', False)

        if self.get_vision_tower() is None:
            if self.config.mm_vision_tower == 'biovil':
                biovilt_checkpoint_path = _download_biovil_t_image_model_weights()
                model_type = ImageEncoderType.RESNET50_MULTI_IMAGE
                vision_tower = ImageModel(img_encoder_type=model_type,
                                joint_feature_size=128,
                                pretrained_model_path=biovilt_checkpoint_path)
                # freeze vision_tower layers
                for p in vision_tower.parameters():
                    p.requires_grad = False
            else:
                vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
            else:
                self.vision_tower = vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_tower = self.vision_tower[0]
            else:
                vision_tower = self.vision_tower
            vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
        self.config.mm_hidden_size = vision_tower.hidden_size if self.config.mm_vision_tower != 'biovil' else vision_tower.feature_size
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature

        if getattr(self, 'mm_projector', None) is None or model_args.vision_tower == 'biovil': #for biovil wrong weights are loaded from model shards, so we need to overwrite the vision projector again
            self.mm_projector = build_vision_projector(self.config)
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        # unfreeze image pooler
        if self.image_pooler is not None:
            for p in self.image_pooler.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))


class LlavaMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        if self.get_model().config.mm_vision_tower == 'biovil':
            image_features = image_features.patch_embeddings
            # flatten
            image_features = image_features.flatten(2).transpose(1,2)

        image_features = self.get_model().mm_projector(image_features)

        return image_features

    def pad_embeddings(self, embeddings, num_imgs_present=None, num_imgs_past=None, padding_value=0):
        """
        Pad the embeddings to have the same number in each batch.

        Args:
        - embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim).
        - padding_value (float): Value to use for padding.

        Returns:
        - Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim).
        - Tensor: Mask indicating real data (1) and padding (0).
        """
        batch_size = len(embeddings)
        img_len = embeddings[0].shape[1]
        embedding_dim = embeddings[0].shape[2]
        max_num_images = max(emb.shape[0] for emb in embeddings)

        # Initialize padded embeddings and mask
        padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device)
        mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device)
        # create token type ids with 0 for present 1 for past, 2 for padding, of shape (batch_size, max_num_images * img_len)
        token_type_ids = torch.zeros(batch_size, max_num_images * img_len, dtype=torch.long, device=embeddings[0].device)
        if num_imgs_present is not None:
            # set token type ids for present to 1, for past to 2, 0 is padded elements
            for idx, (present_len, past_len) in enumerate(zip(num_imgs_present, num_imgs_past)):
                token_type_ids[idx, :present_len*img_len] = 1
                token_type_ids[idx, present_len*img_len:(present_len+past_len)*img_len] = 2

        # Pad each item in the batch
        for idx, emb in enumerate(embeddings):
            num_images = emb.shape[0]
            padded_embeddings[idx, :num_images] = emb
            mask[idx, :num_images*img_len] = 1

        return padded_embeddings.flatten(1,2), mask, token_type_ids

    def pad_embeddings_mv(self, embeddings, padding_value=0):
        """
        Pad the embeddings to have the same number in each batch.

        Args:
        - embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim).
        - padding_value (float): Value to use for padding.

        Returns:
        - Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim).
        - Tensor: Mask indicating real data (1) and padding (0).
        """
        batch_size = len(embeddings)
        img_len = embeddings[0].shape[1]
        embedding_dim = embeddings[0].shape[2]
        max_num_images = max(emb.shape[0] for emb in embeddings)

        # Initialize padded embeddings and mask
        padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device)
        mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device)

        # Pad each item in the batch
        for idx, emb in enumerate(embeddings):
            num_images = emb.shape[0]
            padded_embeddings[idx, :num_images] = emb
            mask[idx, :num_images*img_len] = 1

        return padded_embeddings.flatten(1,2), mask

    def encode_images_pooled(self, images, split_sizes, num_imgs_present, num_imgs_past, mv_type="pool_all"):
        image_pooler = self.get_image_pooler()
        image_features = self.get_model().get_vision_tower()(images)
        if self.get_model().config.mm_vision_tower == 'biovil':
            image_features = image_features.patch_embeddings
            # flatten
            image_features = image_features.flatten(2).transpose(1,2)
        if split_sizes is not None:
            image_features = torch.split(image_features, split_sizes, dim=0)

            if mv_type == "pool_all":
                # merge present and past per batch
                present_features = [image_features[i] for i in range(len(num_imgs_present))]
                past_features = []
                i = 0
                for num_imgs_elem in num_imgs_past:
                    if num_imgs_elem != 0:
                        past_features.append(image_features[i+len(num_imgs_present)])
                        i += 1
                    else:
                        past_features.append(None)

                all_img_features = []
                for idx, (batch_num_present, batch_num_past) in enumerate(zip(num_imgs_present, num_imgs_past)):
                    if batch_num_past == 0:
                        all_img_features.append(present_features[idx])
                    else:
                        all_img_features.append(torch.cat((present_features[idx], past_features[idx]), dim=0))

                all_img_features, mask, token_type_ids  = self.pad_embeddings(all_img_features, num_imgs_present, num_imgs_past)
                all_img_features = image_pooler(all_img_features, mask, token_type_ids)

            elif mv_type == "pool_concat":
                present_features = [image_features[i] for i in range(len(num_imgs_present))]
                past_features = [image_features[i+len(num_imgs_present)] for i in range(len(image_features)-len(num_imgs_present))]
                present_features, mask_present, _ = self.pad_embeddings(present_features)
                past_features, mask_past, _ = self.pad_embeddings(past_features)
                present_features = image_pooler(present_features, mask_present)
                past_features = image_pooler(past_features, mask_past)
                # TODO maybe max pool on past features to save tokens
                # concat present and past per batch if past is not empty
                all_img_features = []
                idx_present = 0
                idx_past = 0
                for batch_num_present, batch_num_past in zip(num_imgs_present, num_imgs_past):
                    if batch_num_past == 0:
                        all_img_features.append(present_features[idx_present])
                        idx_present += 1
                    else:
                        all_img_features.append(torch.cat((present_features[idx_present], past_features[idx_past]), dim=0))
                        idx_present += 1
                        idx_past += 1
        else:
            raise NotImplementedError
        if type(all_img_features) is list:
            split_sizes = [image.shape[0] for image in all_img_features]
            all_img_features = self.get_model().mm_projector(torch.cat(all_img_features, dim=0))
            all_img_features = torch.split(all_img_features, split_sizes, dim=0)

        else:
            all_img_features = self.get_model().mm_projector(all_img_features)
        return all_img_features

    def encode_images_pooled_mv(self, images, split_sizes):
        image_pooler = self.get_image_pooler()
        image_features = self.get_model().get_vision_tower()(images)
        if split_sizes is not None:
            image_features = torch.split(image_features, split_sizes, dim=0)
            image_features, mask  = self.pad_embeddings_mv(image_features)
            image_features = image_pooler(image_features, mask)
        else:
            mask = torch.ones((image_features.shape[0], image_features.shape[1]), dtype=torch.bool, device=image_features[0].device)
            image_features = image_pooler(image_features, mask)
        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def get_image_pooler(self):
        return self.get_model().get_image_pooler()

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels, images, prev_images=None
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
                target_shape = past_key_values[-1][-1].shape[-2] + 1
                attention_mask = torch.cat((attention_mask, torch.ones(
                    (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device
                )), dim=1)
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            if getattr(self.config, 'mv_type') == "concat":
                concat_images = torch.cat([image for image in images], dim=0)
                image_features = self.encode_images(concat_images)
                split_sizes = [image.shape[0] for image in images]
                image_features = torch.split(image_features, split_sizes, dim=0)
                image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
            if getattr(self.config, 'mv_type') == "pool_all":
                concat_images = torch.cat((torch.cat([image for image in images], dim=0), torch.cat([image for image in prev_images if image is not None], dim=0))) # first present, then past, all will be merged
                split_sizes = [image.shape[0] for image in images]+ [image.shape[0] for image in prev_images if image is not None]
                num_imgs_present = [image.shape[0] if image is not None else 0 for image in images]
                num_imgs_past = [image.shape[0] if image is not None else 0 for image in prev_images]
                image_features = self.encode_images_pooled(concat_images, split_sizes, num_imgs_present, num_imgs_past, "pool_all")
            if getattr(self.config, 'mv_type') == "pool_concat": # TODO make sure to allow empty past -> shorter sequence
                concat_images = torch.cat((torch.cat([image for image in images], dim=0), torch.cat([image for image in prev_images if image is not None], dim=0))) # first present, then past, all will be merged
                split_sizes = [image.shape[0] for image in images]+ [image.shape[0] for image in prev_images if image is not None]
                num_imgs_present = [image.shape[0] if image is not None else 0 for image in images]
                num_imgs_past = [image.shape[0] if image is not None else 0 for image in prev_images]
                image_features = self.encode_images_pooled(concat_images, split_sizes, num_imgs_present, num_imgs_past, "pool_concat")
            if getattr(self.config, 'mv_type') == "pool": #no past images
                concat_images = torch.cat([image for image in images], dim=0)
                split_sizes = [image.shape[0] for image in images]
                image_features = self.encode_images_pooled_mv(concat_images, split_sizes)
        else:
            if hasattr(self.config, 'mv_type') and getattr(self.config, 'mv_type') == "pool_all":
                image_features = self.encode_images_pooled(images, None).to(self.device)
            elif hasattr(self.config, 'mv_type') and getattr(self.config, 'mv_type') == "pool":
                image_features = self.encode_images_pooled_mv(images, None).to(self.device)
            else:
                image_features = self.encode_images(images).to(self.device)

        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) #TODO throws GPU error
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- TODO: double check
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
        if tokenizer_model_max_length is not None:
            max_len_orig = max(x.shape[0] for x in new_input_embeds)
            if max_len_orig > tokenizer_model_max_length:
                print(f"Truncating sequences of len {max_len_orig} to {tokenizer_model_max_length} to fit the model's input length")
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
                new_input_embeds_padded.append(torch.cat((
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
                    cur_new_embed
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((
                    cur_new_embed,
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False