|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from contextlib import contextmanager |
|
from typing import Any, Generator, Optional, Sequence, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from health_multimodal.common.device import get_module_device |
|
from timm.models.layers import trunc_normal_ |
|
|
|
from .resnet import resnet18, resnet50 |
|
from .transformer import VisionTransformerPooler |
|
from .types import ImageEncoderType |
|
|
|
DEFAULT_DILATION_VALUES_FOR_RESNET = (False, False, True) |
|
ImageEncoderOutputType = Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]] |
|
|
|
|
|
class ImageEncoder(nn.Module): |
|
"""Image encoder trunk module for the ``ImageModel`` class. |
|
|
|
:param img_encoder_type : Type of image encoder model to use, either ``"resnet18_multi_image"`` or |
|
``"resnet50_multi_image"``. |
|
""" |
|
|
|
def __init__(self, img_encoder_type: str): |
|
super().__init__() |
|
self.img_encoder_type = img_encoder_type |
|
self.encoder = self._create_encoder() |
|
|
|
def _create_encoder(self, **kwargs: Any) -> nn.Module: |
|
if self.img_encoder_type in [ImageEncoderType.RESNET18, ImageEncoderType.RESNET18_MULTI_IMAGE]: |
|
encoder_class = resnet18 |
|
elif self.img_encoder_type in [ImageEncoderType.RESNET50, ImageEncoderType.RESNET50_MULTI_IMAGE]: |
|
encoder_class = resnet50 |
|
else: |
|
supported = ImageEncoderType.get_members(multi_image_encoders_only=False) |
|
raise NotImplementedError(f"Image encoder type \"{self.img_encoder_type}\" must be in {supported}") |
|
|
|
encoder = encoder_class(pretrained=True, **kwargs) |
|
|
|
return encoder |
|
|
|
def forward(self, |
|
current_image: torch.Tensor, |
|
return_patch_embeddings: bool = False) -> ImageEncoderOutputType: |
|
"""Get image global and patch embeddings""" |
|
|
|
patch_emb = self.encoder(current_image) |
|
avg_pooled_emb = torch.flatten(torch.nn.functional.adaptive_avg_pool2d(patch_emb, (1, 1)), 1) |
|
if return_patch_embeddings: |
|
return patch_emb, avg_pooled_emb |
|
|
|
return avg_pooled_emb |
|
|
|
def reload_encoder_with_dilation(self, replace_stride_with_dilation: Optional[Sequence[bool]] = None) -> None: |
|
"""Workaround for enabling dilated convolutions after model initialization. |
|
|
|
:param replace_stride_with_dilation: Replace the 2x2 standard convolution stride with a dilated convolution |
|
in each layer in the last three blocks of ResNet architecture. |
|
""" |
|
if self.img_encoder_type == ImageEncoderType.RESNET18: |
|
|
|
raise NotImplementedError("resnet18 does not support dilated convolutions") |
|
|
|
if replace_stride_with_dilation is None: |
|
replace_stride_with_dilation = DEFAULT_DILATION_VALUES_FOR_RESNET |
|
|
|
device = next(self.encoder.parameters()).device |
|
new_encoder = self._create_encoder(replace_stride_with_dilation=replace_stride_with_dilation).to(device) |
|
|
|
if self.encoder.training: |
|
new_encoder.train() |
|
else: |
|
new_encoder.eval() |
|
|
|
new_encoder.load_state_dict(self.encoder.state_dict()) |
|
self.encoder = new_encoder |
|
|
|
|
|
class MultiImageEncoder(ImageEncoder): |
|
"""Multi-image encoder trunk module for the ``ImageModel`` class. |
|
It can be used to encode multiple images into combined latent representation. |
|
Currently it only supports two input images but can be extended to support more in future. |
|
|
|
:param img_encoder_type: Type of image encoder model to use: either ``"resnet18"`` or ``"resnet50"``. |
|
""" |
|
|
|
def __init__(self, img_encoder_type: str): |
|
super().__init__(img_encoder_type) |
|
|
|
output_dim = 256 |
|
grid_shape = (14, 14) |
|
|
|
backbone_output_feature_dim = get_encoder_output_dim(self.encoder, device=get_module_device(self)) |
|
|
|
self.backbone_to_vit = nn.Conv2d(in_channels=backbone_output_feature_dim, out_channels=output_dim, |
|
kernel_size=1, stride=1, padding=0, bias=False) |
|
self.vit_pooler = VisionTransformerPooler(input_dim=output_dim, grid_shape=grid_shape) |
|
|
|
|
|
self.missing_previous_emb = nn.Parameter(torch.zeros(1, output_dim, 1, 1)) |
|
trunc_normal_(self.missing_previous_emb, std=.02) |
|
|
|
def forward(self, |
|
current_image: torch.Tensor, |
|
previous_image: Optional[torch.Tensor] = None, |
|
return_patch_embeddings: bool = False) -> ImageEncoderOutputType: |
|
|
|
batch_size = current_image.shape[0] |
|
|
|
if previous_image is not None: |
|
assert current_image.shape == previous_image.shape |
|
x = torch.cat([current_image, previous_image], dim=0) |
|
x = super().forward(x, return_patch_embeddings=True)[0] |
|
x = self.backbone_to_vit(x) |
|
patch_x, patch_x_previous = x[:batch_size], x[batch_size:] |
|
diff_x = self.vit_pooler(current_image=patch_x, previous_image=patch_x_previous) |
|
else: |
|
x = super().forward(current_image, return_patch_embeddings=True)[0] |
|
patch_x = self.backbone_to_vit(x) |
|
B, _, W, H = patch_x.shape |
|
diff_x = self.missing_previous_emb.repeat(B, 1, W, H) |
|
|
|
patch_fused = torch.cat([patch_x, diff_x], dim=1) |
|
avg_pooled_emb = torch.flatten(torch.nn.functional.adaptive_avg_pool2d(patch_fused, (1, 1)), 1) |
|
|
|
if return_patch_embeddings: |
|
return patch_fused, avg_pooled_emb |
|
|
|
return avg_pooled_emb |
|
|
|
def reload_encoder_with_dilation(self, replace_stride_with_dilation: Optional[Sequence[bool]] = None) -> None: |
|
raise NotImplementedError |
|
|
|
|
|
@torch.no_grad() |
|
def get_encoder_output_dim(module: torch.nn.Module, device: torch.device) -> int: |
|
"""Calculate the output dimension of an encoder by making a single forward pass. |
|
|
|
:param module: Encoder module. |
|
:param device: Compute device to use. |
|
""" |
|
|
|
assert isinstance(device, torch.device) |
|
|
|
x = torch.rand((1, 3, 448, 448)).to(device) |
|
|
|
|
|
with restore_training_mode(module): |
|
module.eval() |
|
representations = module(x) |
|
return representations.shape[1] |
|
|
|
|
|
@contextmanager |
|
def restore_training_mode(module: nn.Module) -> Generator[None, None, None]: |
|
"""Restore the training mode of a module after some operation. |
|
|
|
:param module: PyTorch module. |
|
""" |
|
training_mode = module.training |
|
yield |
|
module.train(mode=training_mode) |
|
|
|
|
|
def get_encoder_from_type(img_encoder_type: str) -> ImageEncoder: |
|
"""Returns the encoder class for the given encoder type. |
|
|
|
:param img_encoder_type: Encoder type. {RESNET18, RESNET50, RESNET18_MULTI_IMAGE, RESNET50_MULTI_IMAGE} |
|
""" |
|
if img_encoder_type in ImageEncoderType.get_members(multi_image_encoders_only=True): |
|
return MultiImageEncoder(img_encoder_type=img_encoder_type) |
|
else: |
|
return ImageEncoder(img_encoder_type=img_encoder_type) |
|
|