RaDialog-interactive-radiology-report-generation
/
LLAVA_Biovil
/llava
/model
/language_model
/mpt
/adapt_tokenizer.py
from typing import Union | |
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast | |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] | |
NUM_SENTINEL_TOKENS: int = 100 | |
def adapt_tokenizer_for_denoising(tokenizer: Tokenizer): | |
"""Adds sentinel tokens and padding token (if missing). | |
Expands the tokenizer vocabulary to include sentinel tokens | |
used in mixture-of-denoiser tasks as well as a padding token. | |
All added tokens are added as special tokens. No tokens are | |
added if sentinel tokens and padding token already exist. | |
""" | |
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)] | |
tokenizer.add_tokens(sentinels_to_add, special_tokens=True) | |
if tokenizer.pad_token is None: | |
tokenizer.add_tokens('<pad>', special_tokens=True) | |
tokenizer.pad_token = '<pad>' | |
assert tokenizer.pad_token_id is not None | |
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]) | |
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids | |
tokenizer.sentinel_token_ids = _sentinel_token_ids | |
class AutoTokenizerForMOD(AutoTokenizer): | |
"""AutoTokenizer + Adaptation for MOD. | |
A simple wrapper around AutoTokenizer to make instantiating | |
an MOD-adapted tokenizer a bit easier. | |
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>), | |
a padding token, and a property to get the token ids of the | |
sentinel tokens. | |
""" | |
def from_pretrained(cls, *args, **kwargs): | |
"""See `AutoTokenizer.from_pretrained` docstring.""" | |
tokenizer = super().from_pretrained(*args, **kwargs) | |
adapt_tokenizer_for_denoising(tokenizer) | |
return tokenizer |