|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
import torch |
|
|
|
from LLAVA_Biovil.biovil_t.model import ImageModel |
|
from LLAVA_Biovil.biovil_t.pretrained import _download_biovil_t_image_model_weights |
|
from LLAVA_Biovil.biovil_t.types import ImageEncoderType |
|
from LLAVA_Biovil.llava.model.multimodal_encoder.builder import build_vision_tower |
|
from LLAVA_Biovil.llava.model.multimodal_projector.builder import build_vision_projector, build_image_pooler |
|
|
|
from LLAVA_Biovil.llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
|
|
|
|
|
|
class LlavaMetaModel: |
|
|
|
def __init__(self, config): |
|
super(LlavaMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def get_image_pooler(self): |
|
return self.image_pooler |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
|
|
if self.get_vision_tower() is None: |
|
if self.config.mm_vision_tower == 'biovil': |
|
biovilt_checkpoint_path = _download_biovil_t_image_model_weights() |
|
model_type = ImageEncoderType.RESNET50_MULTI_IMAGE |
|
vision_tower = ImageModel(img_encoder_type=model_type, |
|
joint_feature_size=128, |
|
pretrained_model_path=biovilt_checkpoint_path) |
|
|
|
for p in vision_tower.parameters(): |
|
p.requires_grad = False |
|
else: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
self.config.mm_hidden_size = vision_tower.hidden_size if self.config.mm_vision_tower != 'biovil' else vision_tower.feature_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
|
|
if getattr(self, 'mm_projector', None) is None or model_args.vision_tower == 'biovil': |
|
self.mm_projector = build_vision_projector(self.config) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
|
|
if self.image_pooler is not None: |
|
for p in self.image_pooler.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) |
|
|
|
|
|
class LlavaMetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
if self.get_model().config.mm_vision_tower == 'biovil': |
|
image_features = image_features.patch_embeddings |
|
|
|
image_features = image_features.flatten(2).transpose(1,2) |
|
|
|
image_features = self.get_model().mm_projector(image_features) |
|
|
|
return image_features |
|
|
|
def pad_embeddings(self, embeddings, num_imgs_present=None, num_imgs_past=None, padding_value=0): |
|
""" |
|
Pad the embeddings to have the same number in each batch. |
|
|
|
Args: |
|
- embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim). |
|
- padding_value (float): Value to use for padding. |
|
|
|
Returns: |
|
- Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim). |
|
- Tensor: Mask indicating real data (1) and padding (0). |
|
""" |
|
batch_size = len(embeddings) |
|
img_len = embeddings[0].shape[1] |
|
embedding_dim = embeddings[0].shape[2] |
|
max_num_images = max(emb.shape[0] for emb in embeddings) |
|
|
|
|
|
padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device) |
|
mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device) |
|
|
|
token_type_ids = torch.zeros(batch_size, max_num_images * img_len, dtype=torch.long, device=embeddings[0].device) |
|
if num_imgs_present is not None: |
|
|
|
for idx, (present_len, past_len) in enumerate(zip(num_imgs_present, num_imgs_past)): |
|
token_type_ids[idx, :present_len*img_len] = 1 |
|
token_type_ids[idx, present_len*img_len:(present_len+past_len)*img_len] = 2 |
|
|
|
|
|
for idx, emb in enumerate(embeddings): |
|
num_images = emb.shape[0] |
|
padded_embeddings[idx, :num_images] = emb |
|
mask[idx, :num_images*img_len] = 1 |
|
|
|
return padded_embeddings.flatten(1,2), mask, token_type_ids |
|
|
|
def pad_embeddings_mv(self, embeddings, padding_value=0): |
|
""" |
|
Pad the embeddings to have the same number in each batch. |
|
|
|
Args: |
|
- embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim). |
|
- padding_value (float): Value to use for padding. |
|
|
|
Returns: |
|
- Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim). |
|
- Tensor: Mask indicating real data (1) and padding (0). |
|
""" |
|
batch_size = len(embeddings) |
|
img_len = embeddings[0].shape[1] |
|
embedding_dim = embeddings[0].shape[2] |
|
max_num_images = max(emb.shape[0] for emb in embeddings) |
|
|
|
|
|
padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device) |
|
mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device) |
|
|
|
|
|
for idx, emb in enumerate(embeddings): |
|
num_images = emb.shape[0] |
|
padded_embeddings[idx, :num_images] = emb |
|
mask[idx, :num_images*img_len] = 1 |
|
|
|
return padded_embeddings.flatten(1,2), mask |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, images |
|
): |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: |
|
target_shape = past_key_values[-1][-1].shape[-2] + 1 |
|
attention_mask = torch.cat((attention_mask, torch.ones( |
|
(attention_mask.shape[0], target_shape - attention_mask.shape[1]), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device |
|
)), dim=1) |
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
image_features = [x.flatten(0, 1).to(self.device) for x in image_features] |
|
|
|
else: |
|
image_features = self.encode_images(images).to(self.device) |
|
|
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
max_len_orig = max(x.shape[0] for x in new_input_embeds) |
|
if max_len_orig > tokenizer_model_max_length: |
|
print(f"Truncating sequences of len {max_len_orig} to {tokenizer_model_max_length} to fit the model's input length") |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|