ga89tiy commited on
Commit
6a93830
1 Parent(s): 71b35d2
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -30,7 +30,6 @@ library_name: transformers
30
  Clone repository:
31
  ```python
32
  git clone https://huggingface.co/Chantal/RaDialog-interactive-radiology-report-generation
33
- cd RaDialog-interactive-radiology-report-generation
34
  ```
35
 
36
  Install requirements:
@@ -67,7 +66,7 @@ def load_model_from_huggingface(repo_id):
67
  model_path = Path(model_path)
68
 
69
  tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base='liuhaotian/llava-v1.5-7b',
70
- model_name="llava-v1.5-7b-task-lora_radialog_instruct_llava_biovil_unfrozen_2e-5_5epochs_v5_checkpoint-21000", load_8bit=False, $
71
 
72
 
73
  return tokenizer, model, image_processor, context_len
@@ -96,7 +95,7 @@ if __name__ == '__main__':
96
  findings = ', '.join(findings).lower().strip()
97
 
98
  conv = conv_vicuna_v1.copy()
99
- REPORT_GEN_PROMPT = f"<image>. Predicted Findings: {findings}. You are to act as a radiologist and write the finding section of a chest x-ray radiology report for this X-ray image and the given predi$
100
  print("USER: ", REPORT_GEN_PROMPT)
101
  conv.append_message("USER", REPORT_GEN_PROMPT)
102
  conv.append_message("ASSISTANT", None)
@@ -171,6 +170,7 @@ if __name__ == '__main__':
171
 
172
  pred = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip().replace("</s>", "")
173
  print("ASSISTANT: ", pred)
 
174
  ```
175
 
176
  ## ✏️ Citation
 
30
  Clone repository:
31
  ```python
32
  git clone https://huggingface.co/Chantal/RaDialog-interactive-radiology-report-generation
 
33
  ```
34
 
35
  Install requirements:
 
66
  model_path = Path(model_path)
67
 
68
  tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base='liuhaotian/llava-v1.5-7b',
69
+ model_name="llava-v1.5-7b-task-lora_radialog_instruct_llava_biovil_unfrozen_2e-5_5epochs_v5_checkpoint-21000", load_8bit=False, load_4bit=False)
70
 
71
 
72
  return tokenizer, model, image_processor, context_len
 
95
  findings = ', '.join(findings).lower().strip()
96
 
97
  conv = conv_vicuna_v1.copy()
98
+ REPORT_GEN_PROMPT = f"<image>. Predicted Findings: {findings}. You are to act as a radiologist and write the finding section of a chest x-ray radiology report for this X-ray image and the given predicted findings. Write in the style of a radiologist, write one fluent text without enumeration, be concise and don't provide explanations or reasons."
99
  print("USER: ", REPORT_GEN_PROMPT)
100
  conv.append_message("USER", REPORT_GEN_PROMPT)
101
  conv.append_message("ASSISTANT", None)
 
170
 
171
  pred = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip().replace("</s>", "")
172
  print("ASSISTANT: ", pred)
173
+
174
  ```
175
 
176
  ## ✏️ Citation