""" Usage: python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta """ import argparse import torch from tqdm import tqdm from transformers import AutoTokenizer, AutoModelForCausalLM from LLAVA_Biovil.llava import LlavaLlamaForCausalLM def apply_delta(base_model_path, target_model_path, delta_path): print("Loading base model") base = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) print("Loading delta") delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) delta_tokenizer = AutoTokenizer.from_pretrained(delta_path) print("Applying delta") for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"): if name not in base.state_dict(): assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model' continue if param.data.shape == base.state_dict()[name].shape: param.data += base.state_dict()[name] else: assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \ f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}' bparam = base.state_dict()[name] param.data[:bparam.shape[0], :bparam.shape[1]] += bparam print("Saving target model") delta.save_pretrained(target_model_path) delta_tokenizer.save_pretrained(target_model_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--base-model-path", type=str, required=True) parser.add_argument("--target-model-path", type=str, required=True) parser.add_argument("--delta-path", type=str, required=True) args = parser.parse_args() apply_delta(args.base_model_path, args.target_model_path, args.delta_path)