import torch import torch.nn as nn import re from transformers import BertConfig, BertModel class IdentityMap(nn.Module): def __init__(self): super().__init__() def forward(self, x, *args, **kwargs): return x @property def config(self): return {"mm_projector_type": 'identity'} class SimpleResBlock(nn.Module): def __init__(self, channels): super().__init__() self.pre_norm = nn.LayerNorm(channels) self.proj = nn.Sequential( nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels) ) def forward(self, x): x = self.pre_norm(x) return x + self.proj(x) def build_vision_projector(config, delay_load=False, **kwargs): projector_type = getattr(config, 'mm_projector_type', 'linear') if projector_type == 'linear': return nn.Linear(config.mm_hidden_size, config.hidden_size) mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) if mlp_gelu_match: mlp_depth = int(mlp_gelu_match.group(1)) modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] for _ in range(1, mlp_depth): modules.append(nn.GELU()) modules.append(nn.Linear(config.hidden_size, config.hidden_size)) return nn.Sequential(*modules) if projector_type == 'identity': return IdentityMap() raise ValueError(f'Unknown projector type: {projector_type}') class ImageEmbeddingPooler(nn.Module): def __init__(self): super().__init__() self.embedding_dim = 512 # Configure a new BERT model with 2 hidden layers and without positional embeddings config = BertConfig( hidden_size=self.embedding_dim, num_hidden_layers=2, # Set the number of hidden layers to 2 num_attention_heads=8, intermediate_size=self.embedding_dim*4, use_position_embeddings=True, max_position_embeddings=2304, use_bfloat16=True, vocab_size=1, ) self.bert = BertModel(config) def forward(self, embeddings, attention_mask): # embeddings shape: (batch_size, num_images, embedding_dim) batch_size, num_tokens, _ = embeddings.shape # Process embeddings through BERT without positional IDs outputs = self.bert(inputs_embeds=embeddings, attention_mask=attention_mask) # identity option outputs = outputs['last_hidden_state'].to(embeddings.dtype)[:, :196] return outputs def build_image_pooler(config): return ImageEmbeddingPooler()