# ------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------- from typing import Any, List, Tuple, Type, Union import torch from torch.hub import load_state_dict_from_url from torchvision.models.resnet import ResNet, BasicBlock, Bottleneck TypeSkipConnections = Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor] class ResNetHIML(ResNet): """Wrapper class of the original torchvision ResNet model. The forward function is updated to return the penultimate layer activations, which are required to obtain image patch embeddings. """ def __init__(self, **kwargs: Any) -> None: super().__init__(**kwargs) def forward(self, x: torch.Tensor, return_intermediate_layers: bool = False) -> Union[torch.Tensor, TypeSkipConnections]: """ResNetHIML forward pass. Optionally returns intermediate layers using the ``return_intermediate_layers`` argument. :param return_intermediate_layers: If ``True``, return layers x0-x4 as a tuple, otherwise return x4 only. """ x0 = self.conv1(x) x0 = self.bn1(x0) x0 = self.relu(x0) x0 = self.maxpool(x0) x1 = self.layer1(x0) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) if return_intermediate_layers: return x0, x1, x2, x3, x4 else: return x4 def _resnet(arch: str, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], pretrained: bool, progress: bool, **kwargs: Any) -> ResNetHIML: """Instantiate a custom :class:`ResNet` model. Adapted from :mod:`torchvision.models.resnet`. """ model = ResNetHIML(block=block, layers=layers, **kwargs) if pretrained: state_dict = load_state_dict_from_url('https://download.pytorch.org/models/resnet50-19c8e357.pth', progress=progress) model.load_state_dict(state_dict) return model def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNetHIML: r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" `_. :param pretrained: If ``True``, returns a model pre-trained on ImageNet. :param progress: If ``True``, displays a progress bar of the download to ``stderr``. """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNetHIML: r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" `_. :param pretrained: If ``True``, returns a model pre-trained on ImageNet :param progress: If ``True``, displays a progress bar of the download to ``stderr``. """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)