# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import shutil from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig import torch from LLAVA_Biovil.biovil_t.model import ImageModel from LLAVA_Biovil.biovil_t.pretrained import _download_biovil_t_image_model_weights from LLAVA_Biovil.biovil_t.types import ImageEncoderType from LLAVA_Biovil.llava.model.multimodal_projector.builder import build_vision_projector try: from LLAVA_Biovil.llava.model import * from LLAVA_Biovil.llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN except: from LLAVA_Biovil.llava.model import * from LLAVA_Biovil.llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", **kwargs): print("Model base: ", model_base) kwargs = {"device_map": device_map, **kwargs} if device != "cuda": kwargs['device_map'] = {"": device} if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: # kwargs['torch_dtype'] = torch.float16 kwargs['torch_dtype'] = torch.bfloat16 if 'llava' in model_name.lower(): # Load LLaVA model if 'lora' in model_name.lower() and model_base is None: warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') if 'lora' in model_name.lower() and model_base is not None: lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) if 'LLaVAMed' in model_base: lora_cfg_pretrained.mm_projector_type = 'linear' #for LLaVA med tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) print('Loading LLaVA from base model...') model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) if model.config.mm_vision_tower == 'biovil': # reset mm_projector as wrong shape is loaded from pretrained base model model.model.mm_projector = build_vision_projector(model.config) model.model.mm_projector.to(device=model.device, dtype=model.dtype) print('Loading additional LLaVA weights...') if os.path.exists(os.path.join(model_path, 'non_lora_trainables_extended.bin')): #TODO only for fixed runs, can be deleted later non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables_extended.bin'), map_location='cpu') non_lora_trainables = {(k[7:] if k.startswith('module.') else k): v for k, v in non_lora_trainables.items()} elif os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} if any(k.startswith('model.model.') for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print('Loading LoRA weights...') model = PeftModel.from_pretrained(model, model_path) print('Merging LoRA weights...') model = model.merge_and_unload() print('Model is loaded...') elif model_base is not None: # this may be mm projector only print('Loading LLaVA from base model...') if 'mpt' in model_name.lower(): if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) model = LlavaMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') mm_projector_weights = {k: v.to(torch.bfloat16) for k, v in mm_projector_weights.items()} model.load_state_dict(mm_projector_weights, strict=False) else: if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = LlavaMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: # Load language model if model_base is not None: # PEFT model from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) print(f"Loading LoRA weights from {model_path}") model = PeftModel.from_pretrained(model, model_path) print(f"Merging weights") model = model.merge_and_unload() print('Convert to FP16...') model.to(torch.bfloat16) else: use_fast = False if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) image_processor = None if 'llava' in model_name.lower(): mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) if model.config.mm_vision_tower == 'biovil': biovilt_checkpoint_path = _download_biovil_t_image_model_weights() model_type = ImageEncoderType.RESNET50_MULTI_IMAGE vision_tower = ImageModel(img_encoder_type=model_type, joint_feature_size=128, pretrained_model_path=biovilt_checkpoint_path) model.model.vision_tower = vision_tower else: vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() vision_tower.to(device=device, dtype=torch.bfloat16) image_processor = vision_tower.image_processor # if non_lora_trainables contains something about vision_tower, load it if non_lora_trainables is not None and any(k.startswith('model.vision_tower.') for k in non_lora_trainables): new_vision_tower_state_dict = {} for k, v in non_lora_trainables.items(): # we need remapping, because state_dict from model is always like model.vision_tower. It should be vision_tower. if 'model.vision_tower.vision_tower.' in k: #original CLIP new_k = k.replace('model.vision_tower.', '') new_vision_tower_state_dict[new_k] = v elif 'model.vision_tower' in k: #biovil new_k = k.replace('model.vision_tower.', '') new_vision_tower_state_dict[new_k] = v print('Loaded additional vision tower weights...') vision_tower.load_state_dict(new_vision_tower_state_dict, strict=False) # weight difference sum([torch.norm(value-vision_tower.state_dict()[key].cpu()) for key,value in new_vision_tower_state_dict.items()]) image_pooler = model.get_image_pooler() if image_pooler is not None: image_pooler.to(device=device, dtype=torch.float16) if non_lora_trainables is not None and any(k.startswith('model.image_pooler.') for k in non_lora_trainables): new_image_pooler_state_dict = {} for k, v in non_lora_trainables.items(): # we need remapping, because state_dict from model is always like model.vision_tower. It should be vision_tower. if 'model.image_pooler.' in k: new_k = k.replace('model.image_pooler.', '') new_image_pooler_state_dict[new_k] = v print('Loading additional image pooler weights...') image_pooler.load_state_dict(new_image_pooler_state_dict, strict=True) if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len