# ------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------- from typing import Callable, Optional import torch import torch.nn as nn class MLP(nn.Module): """ Fully connected layers to map between image embeddings and projection space where pairs of images are compared. :param input_dim: Input embedding feature size :param hidden_dim: Hidden layer size in MLP :param output_dim: Output projection size :param use_1x1_convs: Use 1x1 conv kernels instead of 2D linear transformations for speed and memory efficiency. """ def __init__(self, input_dim: int, output_dim: int, hidden_dim: Optional[int] = None, use_1x1_convs: bool = False) -> None: super().__init__() if use_1x1_convs: linear_proj_1_args = {'in_channels': input_dim, 'out_channels': hidden_dim, 'kernel_size': 1, 'bias': False} linear_proj_2_args = {'in_channels': hidden_dim, 'out_channels': output_dim, 'kernel_size': 1, 'bias': True} normalisation_layer: Callable = nn.BatchNorm2d projection_layer: Callable = nn.Conv2d else: linear_proj_1_args = {'in_features': input_dim, 'out_features': hidden_dim, 'bias': False} linear_proj_2_args = {'in_features': hidden_dim, 'out_features': output_dim, 'bias': True} normalisation_layer = nn.BatchNorm1d projection_layer = nn.Linear self.output_dim = output_dim self.input_dim = input_dim if hidden_dim is not None: self.model = nn.Sequential( projection_layer(**linear_proj_1_args), normalisation_layer(hidden_dim), nn.ReLU(inplace=True), projection_layer(**linear_proj_2_args)) else: self.model = nn.Linear(input_dim, output_dim) # type: ignore def forward(self, x: torch.Tensor) -> torch.Tensor: """forward pass of the multi-layer perceptron""" x = self.model(x) return x class MultiTaskModel(nn.Module): """Torch module for multi-task classification heads. We create a separate classification head for each task and perform a forward pass on each head independently in forward(). Classification heads are instances of `MLP`. :param input_dim: Number of dimensions of the input feature map. :param classifier_hidden_dim: Number of dimensions of hidden features in the MLP. :param num_classes: Number of output classes per task. :param num_tasks: Number of classification tasks or heads required. """ def __init__(self, input_dim: int, classifier_hidden_dim: Optional[int], num_classes: int, num_tasks: int): super().__init__() self.num_classes = num_classes self.num_tasks = num_tasks for task in range(num_tasks): setattr(self, "fc_" + str(task), MLP(input_dim, output_dim=num_classes, hidden_dim=classifier_hidden_dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: """Returns [batch_size, num_tasks, num_classes] tensor of logits.""" batch_size = x.shape[0] out = torch.zeros((batch_size, self.num_classes, self.num_tasks), dtype=x.dtype, device=x.device) for task in range(self.num_tasks): classifier = getattr(self, "fc_" + str(task)) out[:, :, task] = classifier(x) return out