charleselena's picture
commet processor
4fb1dc1 verified
raw
history blame
6.79 kB
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
#from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionSafetyChecker
# import Safety Checker
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import torch
import numpy as np
import cv2
import controlnet_hinter
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
# controlnet mapping for controlnet id and control hinter
CONTROLNET_MAPPING = {
"canny_edge": {
"model_id": "lllyasviel/sd-controlnet-canny",
"hinter": controlnet_hinter.hint_canny
},
"pose": {
"model_id": "lllyasviel/sd-controlnet-openpose",
"hinter": controlnet_hinter.hint_openpose
},
"depth": {
"model_id": "lllyasviel/sd-controlnet-depth",
"hinter": controlnet_hinter.hint_depth
},
"scribble": {
"model_id": "lllyasviel/sd-controlnet-scribble",
"hinter": controlnet_hinter.hint_scribble,
},
"segmentation": {
"model_id": "lllyasviel/sd-controlnet-seg",
"hinter": controlnet_hinter.hint_segmentation,
},
"normal": {
"model_id": "lllyasviel/sd-controlnet-normal",
"hinter": controlnet_hinter.hint_normal,
},
"hed": {
"model_id": "lllyasviel/sd-controlnet-hed",
"hinter": controlnet_hinter.hint_hed,
},
"hough": {
"model_id": "lllyasviel/sd-controlnet-mlsd",
"hinter": controlnet_hinter.hint_hough,
}
}
class EndpointHandler():
def __init__(self, path=""):
# define default controlnet id and load controlnet
self.control_type = "depth"
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
#processor = AutoProcessor.from_pretrained("CompVis/stable-diffusion-safety-checker")
# Load StableDiffusionControlNetPipeline
#self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
self.stable_diffusion_id = "Lykon/dreamshaper-8"
# self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
# controlnet=self.controlnet,
# torch_dtype=dtype,
# #safety_checker=None).to(device)
# #processor = AutoProcessor.from_pretrained("CompVis/stable-diffusion-safety-checker")
# #safety_checker = SafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
# safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
# self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
# self.stable_diffusion_id,
# controlnet=self.controlnet,
# torch_dtype=dtype,
# safety_checker = SafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
# ).to(device)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
controlnet=self.controlnet,
torch_dtype=dtype,
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")).to(device)
# Define Generator with seed
self.generator = torch.Generator(device="cpu").manual_seed(3)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
:param data: A dictionary contains `inputs` and optional `image` field.
:return: A dictionary with `image` field contains image in base64.
"""
prompt = data.pop("inputs", None)
image = data.pop("image", None)
controlnet_type = data.pop("controlnet_type", None)
# Check if neither prompt nor image is provided
if prompt is None and image is None:
return {"error": "Please provide a prompt and base64 encoded image."}
# Check if a new controlnet is provided
if controlnet_type is not None and controlnet_type != self.control_type:
print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
self.control_type = controlnet_type
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
torch_dtype=dtype).to(device)
self.pipe.controlnet = self.controlnet
# hyperparamters
negatice_prompt = data.pop("negative_prompt", None)
num_inference_steps = data.pop("num_inference_steps", 30)
guidance_scale = data.pop("guidance_scale", 7.5)
negative_prompt = data.pop("negative_prompt", None)
height = data.pop("height", None)
width = data.pop("width", None)
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 0.8)
# process image
image = self.decode_base64_image(image)
#control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
# run inference pipeline
out = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
#image=control_image,
image=image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
height=height,
width=width,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=self.generator
)
# return first generate PIL image
return out.images[0]
# helper to decode input image
def decode_base64_image(self, image_string):
base64_image = base64.b64decode(image_string)
buffer = BytesIO(base64_image)
image = Image.open(buffer)
return image