precessor after generated image
Browse files- handler.py +22 -9
handler.py
CHANGED
@@ -5,8 +5,9 @@ from io import BytesIO
|
|
5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
6 |
#from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionSafetyChecker
|
7 |
# import Safety Checker
|
8 |
-
|
9 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
|
10 |
|
11 |
import torch
|
12 |
|
@@ -64,6 +65,9 @@ class EndpointHandler():
|
|
64 |
# define default controlnet id and load controlnet
|
65 |
self.control_type = "depth"
|
66 |
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
|
|
|
|
|
|
|
67 |
|
68 |
# Load StableDiffusionControlNetPipeline
|
69 |
#self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
@@ -80,17 +84,15 @@ class EndpointHandler():
|
|
80 |
# self.stable_diffusion_id,
|
81 |
# controlnet=self.controlnet,
|
82 |
# torch_dtype=dtype,
|
83 |
-
# safety_checker =
|
84 |
# ).to(device)
|
85 |
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
88 |
-
self.stable_diffusion_id,
|
89 |
-
controlnet=self.controlnet,
|
90 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
91 |
-
).to(device)
|
92 |
|
93 |
-
|
94 |
# Define Generator with seed
|
95 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
96 |
|
@@ -128,6 +130,17 @@ class EndpointHandler():
|
|
128 |
# process image
|
129 |
image = self.decode_base64_image(image)
|
130 |
#control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
# run inference pipeline
|
133 |
out = self.pipe(
|
|
|
5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
6 |
#from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionSafetyChecker
|
7 |
# import Safety Checker
|
8 |
+
from transformers import AutoProcessor, SafetyChecker
|
9 |
+
#from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
10 |
+
|
11 |
|
12 |
import torch
|
13 |
|
|
|
65 |
# define default controlnet id and load controlnet
|
66 |
self.control_type = "depth"
|
67 |
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
|
68 |
+
|
69 |
+
processor = AutoProcessor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
70 |
+
|
71 |
|
72 |
# Load StableDiffusionControlNetPipeline
|
73 |
#self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
|
|
84 |
# self.stable_diffusion_id,
|
85 |
# controlnet=self.controlnet,
|
86 |
# torch_dtype=dtype,
|
87 |
+
# safety_checker = SafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
88 |
# ).to(device)
|
89 |
|
90 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
91 |
+
controlnet=self.controlnet,
|
92 |
+
torch_dtype=dtype,
|
93 |
+
safety_checker=None).to(device)
|
94 |
|
|
|
|
|
|
|
|
|
|
|
95 |
|
|
|
96 |
# Define Generator with seed
|
97 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
98 |
|
|
|
130 |
# process image
|
131 |
image = self.decode_base64_image(image)
|
132 |
#control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
133 |
+
|
134 |
+
|
135 |
+
processor = AutoProcessor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
136 |
+
safety_checker = SafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
137 |
+
|
138 |
+
safety_features = processor(image)
|
139 |
+
safety_check_result = safety_checker(images=image, features=safety_features)
|
140 |
+
|
141 |
+
print(f'Ocurri贸 un error: {safety_check_result}')
|
142 |
+
print(f'Ocurri贸 un error: {safety_check_result["nsfw_content_detected"]')
|
143 |
+
|
144 |
|
145 |
# run inference pipeline
|
146 |
out = self.pipe(
|