File size: 7,276 Bytes
b33a043
 
 
 
 
80c4adf
b33a043
 
 
 
 
 
 
 
 
 
 
 
 
80c4adf
 
 
 
 
 
 
 
 
b33a043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c4adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33a043
 
 
 
f021d10
b33a043
f021d10
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
tags:
- trl
- dpo
- alignment-handbook
- generated_from_trainer
model-index:
- name: OpenELM-1_1B-DPO-full-max-14-reward
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenELM-1_1B-DPO-full-max-14-reward

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1518
- Rewards/chosen: -4.0625
- Rewards/rejected: -4.5312
- Rewards/accuracies: 0.4980
- Rewards/margins: 0.4824
- Logps/rejected: -744.0
- Logps/chosen: -724.0
- Logits/rejected: -15.25
- Logits/chosen: -15.5625

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.05          | 0.1047 | 100  | 0.8594          | -2.0469        | -2.3906          | 0.5488             | 0.3496          | -528.0         | -524.0       | -9.3125         | -9.5625       |
| 0.0695        | 0.2094 | 200  | 0.7369          | -1.2031        | -1.3984          | 0.4883             | 0.1953          | -428.0         | -438.0       | -12.9375        | -13.3125      |
| 0.0402        | 0.3141 | 300  | 1.4284          | -4.5938        | -5.0             | 0.5195             | 0.4297          | -792.0         | -776.0       | -9.125          | -9.75         |
| 0.0373        | 0.4188 | 400  | 0.8732          | -2.3906        | -2.5156          | 0.4902             | 0.1279          | -540.0         | -556.0       | -13.375         | -13.5625      |
| 0.0289        | 0.5236 | 500  | 0.9761          | -3.5938        | -3.8906          | 0.4902             | 0.2871          | -676.0         | -680.0       | -15.0           | -15.25        |
| 0.0549        | 0.6283 | 600  | 0.9004          | -2.3594        | -2.6094          | 0.4805             | 0.2539          | -548.0         | -556.0       | -15.0625        | -15.1875      |
| 0.0385        | 0.7330 | 700  | 0.9997          | -3.125         | -3.25            | 0.4746             | 0.1299          | -612.0         | -632.0       | -11.5           | -11.875       |
| 0.0303        | 0.8377 | 800  | 1.0037          | -2.7656        | -2.9375          | 0.4785             | 0.1748          | -584.0         | -596.0       | -13.75          | -14.0625      |
| 0.0147        | 0.9424 | 900  | 1.1243          | -3.6094        | -3.7656          | 0.4824             | 0.1553          | -664.0         | -680.0       | -13.8125        | -14.1875      |
| 0.0038        | 1.0471 | 1000 | 1.0635          | -3.5781        | -3.7969          | 0.4941             | 0.2158          | -668.0         | -676.0       | -13.8125        | -14.125       |
| 0.0192        | 1.1518 | 1100 | 1.2317          | -4.1875        | -4.5625          | 0.4941             | 0.3711          | -744.0         | -736.0       | -14.0           | -14.25        |
| 0.0035        | 1.2565 | 1200 | 1.1275          | -3.8125        | -4.0938          | 0.5195             | 0.2676          | -696.0         | -700.0       | -13.6875        | -14.0625      |
| 0.0014        | 1.3613 | 1300 | 1.1072          | -3.8281        | -4.1875          | 0.5039             | 0.3672          | -708.0         | -700.0       | -10.3125        | -11.0         |
| 0.0009        | 1.4660 | 1400 | 1.2158          | -4.1562        | -4.5938          | 0.5039             | 0.4570          | -748.0         | -732.0       | -15.6875        | -16.0         |
| 0.0047        | 1.5707 | 1500 | 0.9804          | -3.4062        | -3.7656          | 0.5                | 0.3672          | -664.0         | -660.0       | -14.625         | -15.0625      |
| 0.0009        | 1.6754 | 1600 | 1.0340          | -4.0312        | -4.4688          | 0.5137             | 0.4219          | -736.0         | -724.0       | -10.6875        | -11.4375      |
| 0.0053        | 1.7801 | 1700 | 0.9808          | -3.4531        | -3.8125          | 0.5215             | 0.3730          | -672.0         | -664.0       | -16.125         | -16.25        |
| 0.0006        | 1.8848 | 1800 | 0.9781          | -3.2812        | -3.5312          | 0.5098             | 0.2578          | -640.0         | -644.0       | -16.125         | -16.25        |
| 0.0086        | 1.9895 | 1900 | 1.1759          | -4.1562        | -4.6562          | 0.5020             | 0.5195          | -756.0         | -732.0       | -15.4375        | -15.6875      |
| 0.0001        | 2.0942 | 2000 | 1.1181          | -3.8594        | -4.3125          | 0.5                | 0.4473          | -720.0         | -704.0       | -15.4375        | -15.6875      |
| 0.0145        | 2.1990 | 2100 | 1.1573          | -4.0312        | -4.5312          | 0.4980             | 0.4941          | -740.0         | -720.0       | -15.625         | -15.875       |
| 0.0002        | 2.3037 | 2200 | 1.1923          | -4.2188        | -4.7188          | 0.4961             | 0.5234          | -760.0         | -740.0       | -15.0625        | -15.4375      |
| 0.0005        | 2.4084 | 2300 | 1.1497          | -4.0           | -4.5             | 0.4902             | 0.4824          | -736.0         | -720.0       | -15.3125        | -15.5625      |
| 0.0002        | 2.5131 | 2400 | 1.1575          | -4.0312        | -4.5312          | 0.4961             | 0.4902          | -740.0         | -720.0       | -15.375         | -15.6875      |
| 0.0001        | 2.6178 | 2500 | 1.1676          | -4.0938        | -4.5938          | 0.4922             | 0.5039          | -748.0         | -728.0       | -15.25          | -15.5625      |
| 0.0014        | 2.7225 | 2600 | 1.1490          | -4.0312        | -4.5             | 0.5020             | 0.4785          | -740.0         | -720.0       | -15.3125        | -15.625       |
| 0.0002        | 2.8272 | 2700 | 1.1505          | -4.0312        | -4.5312          | 0.4961             | 0.4824          | -740.0         | -720.0       | -15.25          | -15.5625      |
| 0.0002        | 2.9319 | 2800 | 1.1518          | -4.0625        | -4.5312          | 0.4980             | 0.4824          | -744.0         | -724.0       | -15.25          | -15.5625      |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0